NAVY YARD
1201 4th Street SE
Washington, DC 20003
38°52’32.1”N, 77°00’05.1”W
Radio Frequency Exposure
FCC Compliance Assessment

☒ Pre-Activation  □ Post-Activation

**SITE SPECIFIC INFORMATION**

<table>
<thead>
<tr>
<th>Site Name</th>
<th>NAVY YARD</th>
<th>Multi-Licensee Facility</th>
<th>YES ☒ NO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Street Address</td>
<td>1201 4th Street SE</td>
<td>Is Verizon a Significant Contributor to Co-Locator Areas Requiring Mitigation?</td>
<td>YES ☒ NO</td>
</tr>
<tr>
<td>City, State, Zip</td>
<td>Washington, DC 20003</td>
<td></td>
<td>N/A</td>
</tr>
<tr>
<td>Verizon’s Max % MPE (Measured - Occupational)</td>
<td>N/A</td>
<td>Verizon’s Max % MPE (Predictive - Occupational)</td>
<td>60.79 %</td>
</tr>
<tr>
<td>Structure Type</td>
<td>Rooftop</td>
<td>Assessment Date</td>
<td>04/01/2021</td>
</tr>
<tr>
<td>Broadcast (AM/FM/TV) Co-Locators</td>
<td>YES ☒ NO</td>
<td>Assessment Purpose</td>
<td>MODIFICATION</td>
</tr>
<tr>
<td>Total Access Points</td>
<td>6</td>
<td>Total Report Revisions</td>
<td>0</td>
</tr>
<tr>
<td>Original Report Date</td>
<td>04/01/2021</td>
<td>Report Revision Date</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Compliance Status

☒ COMPLIANT AS DESIGNED  ☐ COMPLIANT PER RF SAFETY PLAN SUBMISSION  ☒ MITIGATION IS REQUIRED

**VERIZON’S WORST-CASE RF EMISSIONS IN ACCESSIBLE AREAS AT THIS FACILITY**

☒ BELOW the General Population MPE limit
☐ ABOVE the General Population MPE limit and BELOW the Occupational MPE limit
☐ ABOVE the Occupational MPE limit and BELOW 10x the Occupational MPE limit
☐ ABOVE 10x the Occupational MPE limit

<table>
<thead>
<tr>
<th>Final Compliant Configuration</th>
<th>GUIDELINES</th>
<th>NOTICE</th>
<th>CAUTION</th>
<th>WARNING</th>
<th>NOC INFO</th>
<th>BARRIER/ MARKER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alpha</td>
<td>☐ [#]</td>
<td>☒ [2]</td>
<td>☐ [#]</td>
<td>☐ [#]</td>
<td>☐ [#]</td>
<td>☐ dimensions</td>
</tr>
<tr>
<td>Beta</td>
<td>☐ [#]</td>
<td>☒ [1]</td>
<td>☐ [#]</td>
<td>☐ [#]</td>
<td>☐ [#]</td>
<td>☐ dimensions</td>
</tr>
<tr>
<td>Gamma</td>
<td>☐ [#]</td>
<td>☒ [1]</td>
<td>☐ [#]</td>
<td>☐ [#]</td>
<td>☐ [#]</td>
<td>☐ dimensions</td>
</tr>
<tr>
<td>Delta</td>
<td>☐ [#]</td>
<td>☒ [6]</td>
<td>☐ [#]</td>
<td>☐ [#]</td>
<td>☐ [#]</td>
<td>☒ 14’x11’</td>
</tr>
</tbody>
</table>

NOTE: The table above represents EVERY compliance item that MUST be implemented at this location; also, in Sec. 4 (B)

**Additional Compliance Requirements(s):**

N/A

Consultant Legal Name: Telnet Inc.
Phone/Fax: (301) 840 7110 ext. 61062 or 61608
Address: 7630 Standish Place, Rockville, MD 20855
Contents
1. Introduction .............................................................................................................................................. 4
2. Existing Site Characteristics .................................................................................................................. 5
   a. Structure ............................................................................................................................................... 5
   b. Accessibility ......................................................................................................................................... 5
   c. Existing Verizon Observations ........................................................................................................... 5
   d. Antenna Inventory .............................................................................................................................. 6
3. Analysis .................................................................................................................................................. 8
   a. Predictive Model: All Transmitters ..................................................................................................... 9
   b. Predictive Model: Verizon Transmitters ............................................................................................. 10
   c. Predictive Model: All Transmitters ................................................................................................... 11
   d. Predictive Model: Verizon Transmitters ............................................................................................. 12
   e. Predictive Model: All Transmitters ................................................................................................... 13
   f. Predictive Model: Verizon Transmitters ............................................................................................. 14
   g. Predictive Model: All Transmitters ................................................................................................... 15
   h. Predictive Model: Verizon Transmitters ............................................................................................. 16
   i. Predictive Model: All Transmitters ................................................................................................... 17
   j. Predictive Model: Verizon Transmitters ............................................................................................. 18
   k. Predictive Model: All Transmitters ................................................................................................... 19
   l. Predictive Model: Verizon Transmitters ............................................................................................. 20
   m. Predictive Model: All Transmitters ................................................................................................... 21
   n. Predictive Model: Verizon Transmitters ............................................................................................. 22
   o. Predictive Model: All Transmitters ................................................................................................... 23
   p. Predictive Model: Verizon Transmitters ............................................................................................. 24
4. Conclusion .............................................................................................................................................. 25
   a. Conclusion Narrative .......................................................................................................................... 25
   b. Signage/Barrier Diagram .................................................................................................................... 28
   c. Signage/Barrier Installation Detail ...................................................................................................... 29
5. Appendix A: RF Consultant Certifications ............................................................................................ 30
   a. Preparer Certification .......................................................................................................................... 30
   b. Reviewer Certification ......................................................................................................................... 30
6. Appendix B: Reference Information ....................................................................................................... 31
   a. FCC Rules & Regulations ..................................................................................................................... 31
   b. Occupational Safety and Health Administration (OSHA) Requirements ............................................. 31
   c. RF Signage ......................................................................................................................................... 32
   d. Physical Barriers .................................................................................................................................. 32
   e. Indicative Markers ............................................................................................................................... 32
1. Introduction

Verizon Wireless has contracted with Telnet Inc., an independent Radio Frequency consulting firm, to conduct a Radio Frequency Exposure (RFE) FCC Compliance Assessment of the NAVY YARD cell site. The following report contains a detailed summary of the Radio Frequency environment as it relates to Federal Communications Commission (FCC) and Occupational Safety & Health Administration (OSHA) Rules and Regulations for all individuals.

The Verizon Wireless antenna data was provided by:

<table>
<thead>
<tr>
<th>Name</th>
<th>Jawad Ibrahim</th>
</tr>
</thead>
<tbody>
<tr>
<td>Title</td>
<td>RF Engineer - Regulatory - WBV Network</td>
</tr>
<tr>
<td>Date</td>
<td>3/23/2021</td>
</tr>
<tr>
<td>Sub-Market</td>
<td>BAWA</td>
</tr>
</tbody>
</table>

This compliance assessment and report has been prepared and reviewed by:

<table>
<thead>
<tr>
<th>Preparer</th>
<th>Reviewer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>A.H Albaadani</td>
</tr>
<tr>
<td>Title</td>
<td>EME Report Creator</td>
</tr>
<tr>
<td>Date</td>
<td>04/01/2021</td>
</tr>
</tbody>
</table>

This report utilizes the following for predictive modeling of the ambient RF environment:

MPE Modeling Program: Roofmaster

**Required Modeling Assumptions:** 100% Duty Cycle and Maximum Total Power Output.

Additional Modeling Assumptions:

**General Model Assumptions**

In this report, it is assumed that all antennas are operating at full power at all times. Software modeling was performed for all transmitting antennas located on the site. Telnet, Inc has further assumed a 100% duty cycle and maximum radiated power.

The site has been modeled with these assumptions to show the maximum RF energy density. Telnet Inc believes this to be a worst-case analysis, based on best available data.

If at any time power density measurements were to be made, Telnet Inc believes the real-time measurements would indicate levels below those shown in this report. By modeling in this way, we have conservatively shown exclusion areas (areas not to be entered without a personal RF monitor, carriers reducing power or performing real time measurements to show real time exposure levels).

**Use of Generic Antennas**

For the purposes of this report, the use of ‘Generic’ as an antenna model, or ‘Unknown’ for a wireless carrier, means that the information about the carrier, their FCC license and/ or antenna information was not provided and could not be obtained while on site. In the event of unknown information, Telnet will use our industry specific knowledge of equipment, antenna models and transmit power to model the site. If more specific information can be obtained for the unknown measurement criteria, remodeling of the site is recommended. If no information is available regarding the transmitting service associated with an unidentified antenna, using the antenna manufacturer’s published data regarding the antenna’s physical characteristics makes more conservative assumptions.
2. Existing Site Characteristics

a. Structure

<table>
<thead>
<tr>
<th>Physical Description</th>
<th>Antennas are mounted on top and to the sides of multi-story building.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single-Family Home</td>
<td>☐ YES ☒ NO</td>
</tr>
<tr>
<td>Latitude (NAD 83)</td>
<td>38°52’32.1”N</td>
</tr>
<tr>
<td>Longitude (NAD 83)</td>
<td>77°00’05.1”W</td>
</tr>
<tr>
<td>Total Analyzed Elevations (Roof Levels)</td>
<td>#8 (Penthouse, Roof, Lower Roof 1, Adj. Slanted Roof 1, Adj. Slanted Roof 2, Adj. Slanted Roof 3, Adj. Roof, Ground Levels)</td>
</tr>
</tbody>
</table>

b. Accessibility

<table>
<thead>
<tr>
<th>Question</th>
<th>Answer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Did the property owner or agent of the property owner (e.g. a security guard) grant you access to the rooftop?</td>
<td>N/A</td>
</tr>
<tr>
<td>If not - were you required to be escorted by Verizon personnel in order to gain access?</td>
<td>N/A</td>
</tr>
<tr>
<td>Were you required to provide any proof of identity to gain access?</td>
<td>N/A</td>
</tr>
<tr>
<td>What specific documents were required in order to gain access?</td>
<td>N/A</td>
</tr>
<tr>
<td>All access points locked at time of assessment?</td>
<td>N/A</td>
</tr>
<tr>
<td>All access points alarmed at time of assessment?</td>
<td>N/A</td>
</tr>
<tr>
<td>Were there any broken locks or inoperable alarms on any of the access points to the rooftop?</td>
<td>N/A</td>
</tr>
<tr>
<td>Were there any access issues caused by either the property owner or agent of the property owner?</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Additional Notes: N/A

c. Existing Verizon Observations

<table>
<thead>
<tr>
<th>Existing Observations</th>
<th>GUIDELINES</th>
<th>NOTICE</th>
<th>CAUTION</th>
<th>WARNING</th>
<th>NOC INFO</th>
<th>BARRIER/ MARKER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Access Point(s)</td>
<td>☐[#]</td>
<td>☐[#]</td>
<td>☐[#]</td>
<td>☐[#]</td>
<td>☐[#]</td>
<td>☐ dimensions</td>
</tr>
<tr>
<td>Alpha</td>
<td>☐[#]</td>
<td>☐[#]</td>
<td>☐[#]</td>
<td>☐[#]</td>
<td>☐[#]</td>
<td>☐ dimensions</td>
</tr>
<tr>
<td>Beta</td>
<td>☐[#]</td>
<td>☐[#]</td>
<td>☐[#]</td>
<td>☐[#]</td>
<td>☐[#]</td>
<td>☐ dimensions</td>
</tr>
<tr>
<td>Gamma</td>
<td>☐[#]</td>
<td>☐[#]</td>
<td>☐[#]</td>
<td>☐[#]</td>
<td>☐[#]</td>
<td>☐ dimensions</td>
</tr>
<tr>
<td>Delta</td>
<td>☐[#]</td>
<td>☐[#]</td>
<td>☐[#]</td>
<td>☐[#]</td>
<td>☐[#]</td>
<td>☐ dimensions</td>
</tr>
</tbody>
</table>

NOTE: The table above represents EXISTING compliance items implemented at this location.

<table>
<thead>
<tr>
<th>Question</th>
<th>Answer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Are Verizon signs posted on the front, back and sides of antenna arrays where possible?</td>
<td>N/A</td>
</tr>
<tr>
<td>Are Verizon signs visible from all areas of approach?</td>
<td>N/A</td>
</tr>
<tr>
<td>Are there any broken, damaged or illegible Verizon signs?</td>
<td>N/A</td>
</tr>
<tr>
<td>Are there any broken or damaged Verizon physical barriers?</td>
<td>N/A</td>
</tr>
<tr>
<td>Are there any Verizon indicative markers in need of repair or replacement?</td>
<td>N/A</td>
</tr>
</tbody>
</table>
### d. Antenna Inventory

_Z-height represents the distance from the nearest walking surface to the _____ of the antenna._

<table>
<thead>
<tr>
<th>Antenna Number</th>
<th>Operator</th>
<th>Type</th>
<th>Tx Freq (MHz)</th>
<th>Technology</th>
<th>Input Power (w)</th>
<th>Gain (dBd)</th>
<th>EDT (deg.)</th>
<th>Manufacturer</th>
<th>Model</th>
<th>Azimuth (deg.)</th>
<th>Aperture (ft)</th>
<th>H-BW (deg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>VZW</td>
<td>Panel</td>
<td>28000</td>
<td>5G</td>
<td>2.4</td>
<td>24.0</td>
<td>0</td>
<td>Samsung</td>
<td>VZ-AT1K01</td>
<td>300</td>
<td>1.4</td>
<td>6</td>
</tr>
<tr>
<td>2</td>
<td>VZW</td>
<td>Panel</td>
<td>850</td>
<td>CDMA</td>
<td>140</td>
<td>15.90</td>
<td>0</td>
<td>AMPHENOL</td>
<td>HTXC6318M000-T</td>
<td>340</td>
<td>7.9</td>
<td>63</td>
</tr>
<tr>
<td>3</td>
<td>VZW</td>
<td>Panel</td>
<td>746</td>
<td>LTE</td>
<td>80</td>
<td>15.30</td>
<td>6</td>
<td>JMA</td>
<td>MX06FRO840-02</td>
<td>350</td>
<td>8.0</td>
<td>41</td>
</tr>
<tr>
<td>4</td>
<td>VZW</td>
<td>Panel</td>
<td>850</td>
<td>LTE</td>
<td>80</td>
<td>15.80</td>
<td>6</td>
<td>JMA</td>
<td>MX06FRO840-02</td>
<td>350</td>
<td>8.0</td>
<td>37</td>
</tr>
<tr>
<td>5</td>
<td>VZW</td>
<td>Panel</td>
<td>1900</td>
<td>LTE</td>
<td>80</td>
<td>16.80</td>
<td>4</td>
<td>JMA</td>
<td>MX06FRO840-02</td>
<td>350</td>
<td>8.0</td>
<td>43</td>
</tr>
<tr>
<td>6</td>
<td>VZW</td>
<td>Panel</td>
<td>2100</td>
<td>LTE</td>
<td>120</td>
<td>17.60</td>
<td>4</td>
<td>JMA</td>
<td>MX06FRO840-02</td>
<td>350</td>
<td>8.0</td>
<td>40</td>
</tr>
<tr>
<td>7</td>
<td>VZW</td>
<td>Panel</td>
<td>746</td>
<td>LTE</td>
<td>80</td>
<td>15.30</td>
<td>4</td>
<td>JMA</td>
<td>MX06FRO840-02</td>
<td>350</td>
<td>8.0</td>
<td>41</td>
</tr>
<tr>
<td>8</td>
<td>VZW</td>
<td>Panel</td>
<td>850</td>
<td>LTE</td>
<td>80</td>
<td>15.80</td>
<td>6</td>
<td>JMA</td>
<td>MX06FRO840-02</td>
<td>80</td>
<td>8.0</td>
<td>40</td>
</tr>
<tr>
<td>9</td>
<td>VZW</td>
<td>Panel</td>
<td>1900</td>
<td>LTE</td>
<td>80</td>
<td>16.80</td>
<td>4</td>
<td>JMA</td>
<td>MX06FRO840-02</td>
<td>80</td>
<td>8.0</td>
<td>37</td>
</tr>
<tr>
<td>10</td>
<td>VZW</td>
<td>Panel</td>
<td>28000</td>
<td>5G</td>
<td>2.4</td>
<td>24.0</td>
<td>0</td>
<td>Samsung</td>
<td>VZ-AT1K01</td>
<td>160</td>
<td>1.4</td>
<td>6</td>
</tr>
<tr>
<td>11</td>
<td>VZW</td>
<td>Panel</td>
<td>746</td>
<td>LTE</td>
<td>80</td>
<td>15.30</td>
<td>6</td>
<td>JMA</td>
<td>MX06FRO840-02</td>
<td>125</td>
<td>8.0</td>
<td>41</td>
</tr>
<tr>
<td>12</td>
<td>VZW</td>
<td>Panel</td>
<td>850</td>
<td>LTE</td>
<td>80</td>
<td>15.80</td>
<td>6</td>
<td>JMA</td>
<td>MX06FRO840-02</td>
<td>125</td>
<td>8.0</td>
<td>37</td>
</tr>
<tr>
<td>13</td>
<td>VZW</td>
<td>Panel</td>
<td>1900</td>
<td>LTE</td>
<td>80</td>
<td>16.90</td>
<td>6</td>
<td>JMA</td>
<td>MX06FRO840-02</td>
<td>125</td>
<td>8.0</td>
<td>43</td>
</tr>
<tr>
<td>14</td>
<td>VZW</td>
<td>Panel</td>
<td>2100</td>
<td>LTE</td>
<td>120</td>
<td>17.60</td>
<td>6</td>
<td>JMA</td>
<td>MX06FRO840-02</td>
<td>125</td>
<td>8.0</td>
<td>39</td>
</tr>
<tr>
<td>15</td>
<td>VZW</td>
<td>Panel</td>
<td>746</td>
<td>LTE</td>
<td>80</td>
<td>17.35</td>
<td>9</td>
<td>CSS</td>
<td>X7C-FRO-830-V</td>
<td>230</td>
<td>8.0</td>
<td>32</td>
</tr>
<tr>
<td>16</td>
<td>VZW</td>
<td>Panel</td>
<td>850</td>
<td>LTE</td>
<td>80</td>
<td>17.85</td>
<td>9</td>
<td>CSS</td>
<td>X7C-FRO-830-V</td>
<td>230</td>
<td>8.0</td>
<td>28</td>
</tr>
<tr>
<td>17</td>
<td>Omni</td>
<td>Pole</td>
<td>850</td>
<td>-</td>
<td>100</td>
<td>12.00</td>
<td>-</td>
<td>Unknown</td>
<td>Unknown</td>
<td>0</td>
<td>27.0</td>
<td>360</td>
</tr>
<tr>
<td>Antenna Number</td>
<td>X (ft)</td>
<td>Y (ft)</td>
<td>Z Penthouse (ft)</td>
<td>Z Roof (ft)</td>
<td>Z Lower Roof 1 (ft)</td>
<td>Z Adjacent Slanted Roof 1 (ft)</td>
<td>Z Adjacent Slanted Roof 2 (ft)</td>
<td>Z Adjacent Slanted Roof 3 (ft)</td>
<td>Z Adjacent Roof (ft)</td>
<td>Z Ground (ft)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------------</td>
<td>-------</td>
<td>-------</td>
<td>-----------------</td>
<td>------------</td>
<td>--------------------</td>
<td>-------------------------------</td>
<td>-------------------------------</td>
<td>-------------------------------</td>
<td>-------------------</td>
<td>-------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>268.2</td>
<td>196.3</td>
<td>-19</td>
<td>1</td>
<td>26</td>
<td>82</td>
<td>67</td>
<td>60</td>
<td>86</td>
<td>108</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>408.4</td>
<td>224.3</td>
<td>-4</td>
<td>16</td>
<td>41</td>
<td>97</td>
<td>82</td>
<td>75</td>
<td>101</td>
<td>123</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>413.3</td>
<td>224.3</td>
<td>-4</td>
<td>16</td>
<td>41</td>
<td>97</td>
<td>82</td>
<td>75</td>
<td>101</td>
<td>123</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>416.9</td>
<td>224.3</td>
<td>-4</td>
<td>16</td>
<td>41</td>
<td>97</td>
<td>82</td>
<td>75</td>
<td>101</td>
<td>123</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>535.2</td>
<td>197.5</td>
<td>-19</td>
<td>1</td>
<td>26</td>
<td>82</td>
<td>67</td>
<td>60</td>
<td>86</td>
<td>108</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>508.4</td>
<td>225.5</td>
<td>-4</td>
<td>16</td>
<td>41</td>
<td>97</td>
<td>82</td>
<td>75</td>
<td>101</td>
<td>123</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>508.4</td>
<td>229.2</td>
<td>-4</td>
<td>16</td>
<td>41</td>
<td>97</td>
<td>82</td>
<td>75</td>
<td>101</td>
<td>123</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>508.4</td>
<td>234.1</td>
<td>-4</td>
<td>16</td>
<td>41</td>
<td>97</td>
<td>82</td>
<td>75</td>
<td>101</td>
<td>123</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>534.0</td>
<td>454.7</td>
<td>-19</td>
<td>1</td>
<td>26</td>
<td>82</td>
<td>67</td>
<td>60</td>
<td>86</td>
<td>108</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>501.1</td>
<td>427.9</td>
<td>-4</td>
<td>16</td>
<td>41</td>
<td>97</td>
<td>82</td>
<td>75</td>
<td>101</td>
<td>123</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>493.8</td>
<td>427.9</td>
<td>-4</td>
<td>16</td>
<td>41</td>
<td>97</td>
<td>82</td>
<td>75</td>
<td>101</td>
<td>123</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>486.4</td>
<td>427.9</td>
<td>-4</td>
<td>16</td>
<td>41</td>
<td>97</td>
<td>82</td>
<td>75</td>
<td>101</td>
<td>123</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>346.2</td>
<td>437.7</td>
<td>-4</td>
<td>16</td>
<td>41</td>
<td>97</td>
<td>82</td>
<td>75</td>
<td>101</td>
<td>123</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>343.8</td>
<td>435.2</td>
<td>-4</td>
<td>16</td>
<td>41</td>
<td>97</td>
<td>82</td>
<td>75</td>
<td>101</td>
<td>123</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>338.9</td>
<td>432.8</td>
<td>-4</td>
<td>16</td>
<td>41</td>
<td>97</td>
<td>82</td>
<td>75</td>
<td>101</td>
<td>123</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>268.2</td>
<td>452.3</td>
<td>-19</td>
<td>1</td>
<td>26</td>
<td>82</td>
<td>67</td>
<td>60</td>
<td>86</td>
<td>108</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>403.5</td>
<td>402.3</td>
<td>13</td>
<td>33</td>
<td>58</td>
<td>114</td>
<td>99</td>
<td>92</td>
<td>118</td>
<td>140</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
### Analysis

<table>
<thead>
<tr>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Could field measurements be taken in areas with Verizon antennas?</td>
<td>N/A</td>
</tr>
<tr>
<td>Describe why measurements could not be taken - if applicable.</td>
<td>N/A</td>
</tr>
<tr>
<td>Adjacent Structure(s)</td>
<td>Touching ☐</td>
</tr>
<tr>
<td>☐ Potential Concern ☒ No Concern</td>
<td></td>
</tr>
<tr>
<td>If the structure is a Single-Family Residential Home, were measurements taken inside the residence?</td>
<td>N/A</td>
</tr>
<tr>
<td>Field Measurement Equipment</td>
<td>Broadband ☒</td>
</tr>
<tr>
<td>☐ Narrowband</td>
<td></td>
</tr>
<tr>
<td>Field Measurement Start Time</td>
<td>N/A</td>
</tr>
<tr>
<td>Field Measurement End Time</td>
<td>N/A</td>
</tr>
<tr>
<td>Location Broadband Equipment Zeroed</td>
<td>N/A</td>
</tr>
</tbody>
</table>
a. Predictive Model: All Transmitters

Is the area being modeled completely INACCESSIBLE to members of the general population (including untrained maintenance workers)?

☐ YES ☒ NO

Reference Plane: Penthouse Level

Percent MPE Legend
- 0% - 1%
- 1% - 20%
- 20% - 100%
- 100% - 1000%
- 1000%+

Occupational Limits
Sula 9
10 foot grid size
(Avg: 127 to 133 Feet)
Max Value: 59.97%

 Carrier Color Code
- Verizon
- Unknown

50 ft
b. Predictive Model: Verizon Transmitters

Reference Plane: Penthouse Level

Percent MPE Legend

- 0% - 1%
- 1% - 20%
- 20% - 100%
- 100% - 1000%
- 1000% +

Occupational Limits
Sula 9
10 foot grid size
(Avg: 127 to 133 Feet)
Max Value: 59.97%

Carrier Color Code
- Verizon
- Unknown
c. Predictive Model: All Transmitters

<table>
<thead>
<tr>
<th>Is the area being modeled completely INACCESSIBLE to members of the general population (including untrained maintenance workers)?</th>
</tr>
</thead>
<tbody>
<tr>
<td>□ YES ☒ NO</td>
</tr>
</tbody>
</table>

Reference Plane: Roof Level

Percent MPE Legend
- 0% - 1%
- 1% - 20%
- 20% - 100%
- 100% - 1000%
- 1000% +

Occupational Limits
- Sula 9
- 10 foot grid size
- (Avg: 107 to 113 Feet)

Max Value: 60.79%

Carrier Color Code
- □ Verizon
- Unknown

↑ ≤50 ft →
d. Predictive Model: Verizon Transmitters

Reference Plane: Roof Level

Percent MPE Legend

- 0% - 1%
- 1% - 20%
- 20% - 100%
- 100% - 1000%
- 1000%+

Occupational Limits
Sula 9
10 foot grid size
(Avg: 107 to 113 Feet)
Max Value: 60.79%

Carrier Color Code

- Verizon
- Unknown

Ground
e. Predictive Model: All Transmitters

Is the area being modeled completely INACCESSIBLE to members of the general population (including untrained maintenance workers)?

☐ YES ☒ NO

Reference Plane: Lower Roof 1 Level

Percent MPE Legend

- 0% - 1%
- 1% - 20%
- 20% - 100%
- 100% - 1000%
- 1000% +

Occupational Limits

Sula 9
10 foot grid size
(Avg: 82 to 88 Feet)
Max Value: 3.69%

Carrier Color Code

- Verizon
- Unknown

50 ft
f. Predictive Model: Verizon Transmitters

Reference Plane: Lower Roof 1 Level
g. Predictive Model: All Transmitters

Is the area being modeled completely INACCESSIBLE to members of the general population (including untrained maintenance workers)?

☐ YES ☒ NO

Reference Plane: Adjacent Slanted Roof 1 Level

Percent MPE Legend
- 0% - 1%
- 1% - 20%
- 20% - 100%
- 100% - 1000%
- 1000% +

Occupational Limits
Sula 9
10 foot grid size
(Avg: 26 to 32 Feet)
Max Value: 0.05%

Carrier Color Code
- Verizon
- Unknown

→ 50 ft ←
h. Predictive Model: Verizon Transmitters

Reference Plane: Adjacent Slanted Roof 1 Level

Percent MPE Legend
- 0% - 1%
- 1% - 20%
- 20% - 100%
- 100% - 1000%
- 1000% +

Occupational Limits
Sula 9
10 foot grid size
(Avg: 26 to 32 Feet)
Max Value: 0.05%

Carrier Color Code
- Verizon
- Unknown

+50 ft+
i. Predictive Model: All Transmitters

Is the area being modeled completely INACCESSIBLE to members of the general population (including untrained maintenance workers)?

[ ] YES  [x] NO

Reference Plane: Adjacent Slanted Roof 2 Level

Percent MPE Legend

- 0% - 1%
- 1% - 20%
- 20% - 100%
- 100% - 1000%
- 1000% +

Occupational Limits
Sula 9
10 foot grid size
(Avg: 41 to 47 Feet)
Max Value: 0.07%

Carrier Color Code
- Verizon
- Unknown

+50 ft+
Reference Plane: Adjacent Slanted Roof 2 Level

Percent MPE Legend
- 0% - 1%
- 1% - 20%
- 20% - 100%
- 100% - 1000%
- 1000% +

Occupational Limits
Sula 9
10 foot grid size
(Avg: 41 to 47 Feet)
Max Value: 0.07%

Carrier Color Code
- Verizon
- Unknown

50 ft

Confidential & proprietary material for authorized Verizon Wireless personnel only. Use, disclosure or distribution of this material is not permitted to any unauthorized persons or third parties except by written agreement. | Verizon Wireless
k. Predictive Model: All Transmitters

Is the area being modeled completely INACCESSIBLE to members of the general population (including untrained maintenance workers)?

☐ YES ☒ NO

Reference Plane: Adjacent Slanted Roof 3 Level

Percent MPE Legend
- 0% - 1%
- 1% - 20%
- 20% - 100%
- 100% - 1000%
- 1000% +

Occupational Limits
Sula 9
10 foot grid size
(Avg: 48 to 54 Feet)
Max Value: 0.27%

Carrier Color Code
- Verizon
- Unknown

50 ft
1. Predictive Model: Verizon Transmitters

Reference Plane: Adjacent Slanted Roof 3 Level

Percent MPE Legend
- 0% - 1%
- 1% - 20%
- 20% - 100%
- 100% - 1000%
- 1000% +

Occupational Limits
Sula 9
10 foot grid size
(Avg: 48 to 54 Feet)
Max Value: 0.27%

Carrier Color Code
- Red: Verizon
- Blue: Unknown

→50 ft←
m. Predictive Model: All Transmitters

Is the area being modeled completely INACCESSIBLE to members of the general population (including untrained maintenance workers)?

☐ YES  ☒ NO

Reference Plane: Adjacent Roof Level

Percent MPE Legend

- 0% - 1%
- 1% - 20%
- 20% - 100%
- 100% - 1000%
- 1000% +

Occupational Limits
Sula 9
10 foot grid size
(Avg: 22 to 28 Feet)
Max Value: 0.04%

Carrier Color Code

- Verizon
- Unknown

N

+50 ft+
n. Predictive Model: Verizon Transmitters

Reference Plane: Adjacent Roof Level

Percent MPE Legend
- 0% - 1%
- 1% - 20%
- 20% - 100%
- 100% - 1000%
- 1000% +

Occupational Limits
- Sula 9
  - 10 foot grid size
  - (Avg: 22 to 28 Feet)
  - Max Value: 0.04%

Carrier Color Code
- Red: Verizon
- Blue: Unknown

→ 50 ft ←
o. Predictive Model: All Transmitters

Is the area being modeled completely INACCESSIBLE to members of the general population (including untrained maintenance workers)? □ YES ☒ NO

Reference Plane: Ground Level

Percent MPE Legend
- 0% - 1%
- 1% - 20%
- 20% - 100%
- 100% - 1000%
- 1000% +

Occupational Limits
Sula 9
10 foot grid size
(Avg: 0 to 6 Feet)
Max Value: 0.03%

Carrier Color Code
- Verizon
- Unknown

50 ft
Reference Plane: Ground Level

Percent MPE Legend
- 0% - 1%
- 1% - 20%
- 20% - 100%
- 100% - 1000%
- 1000%+

Occupational Limits
Sula 9
10 foot grid size
(Avg: 0 to 6 Feet)
Max Value: 0.03%

Carrier Color Code
- Verizon
- Unknown

+50 ft+
4. Conclusion

a. Conclusion Narrative

Description of MPE-Limit Exceeding Areas (Penthouse Level):
VZW Alpha sector is exceeding 20% Occupational limits
VZW Beta sector is exceeding 20% Occupational limits
VZW Gamma sector is exceeding 20% Occupational limits
VZW Delta sector is exceeding 20% Occupational limits

Verizon Significant Contribution Areas (Penthouse Level):
VZW Alpha sector is exceeding 1% Occupational limit
VZW Beta sector is exceeding 1% Occupational limit
VZW Gamma sector is exceeding 1% Occupational limit
VZW Delta sector is exceeding 1% Occupational limit

Co-locator Significant Contribution Areas (Penthouse Level):
Omni# 17 is not exceeding 1% Occupational limit

Description of MPE-Limit Exceeding Areas (Roof Level):
VZW Alpha sector is exceeding 20% Occupational limits
VZW Beta sector is exceeding 20% Occupational limits
VZW Gamma sector is exceeding 20% Occupational limits
VZW Delta sector is exceeding 20% Occupational limits

Verizon Significant Contribution Areas (Roof Level):
VZW Alpha sector is exceeding 1% Occupational limit
VZW Beta sector is exceeding 1% Occupational limit
VZW Gamma sector is exceeding 1% Occupational limit
VZW Delta sector is exceeding 1% Occupational limit

Co-locator Significant Contribution Areas (Roof Level):
Omni# 17 is not exceeding 1% Occupational limit

Description of MPE-Limit Exceeding Areas (Lower Roof 1 Level):
VZW Alpha sector is not exceeding 20% Occupational limits
VZW Beta sector is not exceeding 20% Occupational limits
VZW Gamma sector is not exceeding 20% Occupational limits
VZW Delta sector is not exceeding 20% Occupational limits

Verizon Significant Contribution Areas (Lower Roof 1 Level):
VZW Alpha sector is not exceeding 1% Occupational limit
VZW Beta sector is not exceeding 1% Occupational limit
VZW Gamma sector is not exceeding 1% Occupational limit
VZW Delta sector is exceeding 1% Occupational limit

Co-locator Significant Contribution Areas (Lower Roof 1 Level):
Omni# 17 is not exceeding 1% Occupational limit
Description of MPE-Limit Exceeding Areas (Adjacent Slanted Roof 1 Level):
VZW Alpha sector is not exceeding 20% Occupational limits
VZW Beta sector is not exceeding 20% Occupational limits
VZW Gamma sector is not exceeding 20% Occupational limits
VZW Delta sector is not exceeding 20% Occupational limits

Verizon Significant Contribution Areas (Adjacent Slanted Roof 1 Level):
VZW Alpha sector is not exceeding 1% Occupational limit
VZW Beta sector is not exceeding 1% Occupational limit
VZW Gamma sector is not exceeding 1% Occupational limit
VZW Delta sector is not exceeding 1% Occupational limit

Co-locator Significant Contribution Areas (Adjacent Slanted Roof 1 Level):
Omni# 17 is not exceeding 1% Occupational limit

Description of MPE-Limit Exceeding Areas (Adjacent Slanted Roof 2 Level):
VZW Alpha sector is not exceeding 20% Occupational limits
VZW Beta sector is not exceeding 20% Occupational limits
VZW Gamma sector is not exceeding 20% Occupational limits
VZW Delta sector is not exceeding 20% Occupational limits

Verizon Significant Contribution Areas (Adjacent Slanted Roof 2 Level):
VZW Alpha sector is not exceeding 1% Occupational limit
VZW Beta sector is not exceeding 1% Occupational limit
VZW Gamma sector is not exceeding 1% Occupational limit
VZW Delta sector is not exceeding 1% Occupational limit

Co-locator Significant Contribution Areas (Adjacent Slanted Roof 2 Level):
Omni# 17 is not exceeding 1% Occupational limit

Description of MPE-Limit Exceeding Areas (Adjacent Slanted Roof 3 Level):
VZW Alpha sector is not exceeding 20% Occupational limits
VZW Beta sector is not exceeding 20% Occupational limits
VZW Gamma sector is not exceeding 20% Occupational limits
VZW Delta sector is not exceeding 20% Occupational limits

Verizon Significant Contribution Areas (Adjacent Lower Roof 3 Level):
VZW Alpha sector is not exceeding 1% Occupational limit
VZW Beta sector is not exceeding 1% Occupational limit
VZW Gamma sector is not exceeding 1% Occupational limit
VZW Delta sector is not exceeding 1% Occupational limit

Co-locator Significant Contribution Areas (Adjacent Lower Roof 3 Level):
Omni# 17 is not exceeding 1% Occupational limit
Description of MPE-Limit Exceeding Areas (Adjacent Roof Level):
VZW Alpha sector is not exceeding 20% Occupational limits
VZW Beta sector is not exceeding 20% Occupational limits
VZW Gamma sector is not exceeding 20% Occupational limits
VZW Delta sector is not exceeding 20% Occupational limits

Verizon Significant Contribution Areas (Adjacent Roof Level):
VZW Alpha sector is not exceeding 1% Occupational limit
VZW Beta sector is not exceeding 1% Occupational limit
VZW Gamma sector is not exceeding 1% Occupational limit
VZW Delta sector is not exceeding 1% Occupational limit

Co-locator Significant Contribution Areas (Adjacent Roof Level):
Omni# 17 is not exceeding 1% Occupational limit

Description of MPE-Limit Exceeding Areas (Ground Level):
VZW Alpha sector is not exceeding 20% Occupational limits
VZW Beta sector is not exceeding 20% Occupational limits
VZW Gamma sector is not exceeding 20% Occupational limits
VZW Delta sector is not exceeding 20% Occupational limits

Verizon Significant Contribution Areas (Ground Level):
VZW Alpha sector is not exceeding 1% Occupational limit
VZW Beta sector is not exceeding 1% Occupational limit
VZW Gamma sector is not exceeding 1% Occupational limit
VZW Delta sector is not exceeding 1% Occupational limit

Co-locator Significant Contribution Areas (Ground Level):
Omni# 17 is not exceeding 1% Occupational limit

Potentially Non-Compliant Co-Locator Areas: Verizon Responsibility
The following table represents potentially non-compliant co-locators for which Verizon is a 5% General Population MPE (1% Occupational MPE) contributor.

<table>
<thead>
<tr>
<th></th>
<th>AT&amp;T</th>
<th>T-Mobile</th>
<th>Sprint</th>
<th>Unknown</th>
<th>Microwave</th>
<th>Omni</th>
</tr>
</thead>
<tbody>
<tr>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
</tbody>
</table>
b. Signage/Barrier Diagram

- **Sector A 5G**: Install Notice sign behind the sector at roof level.
- **Sector A 4G**: Install Notice sign behind the sector at roof level.
- **Sector B 5G**: Install Notice sign behind the sector at roof level.
- **Sector B 4G**: Install NOC and Guidelines signs.
- **Sector D 5G**: Install Notice sign behind the sector at roof level.
- **Sector C 5G**: Install Notice sign behind the sector at roof level.
- **Sector D 4G**: Install physical barrier (14’x11’) at roof level, 6ft away from roof edge. Install Notice, Notice left and Notice right signs on the proposed barrier.
- **Ground**: General area for ground level installation.
- **Roof Access Door**: Install NOC and Guidelines signs.
- **Upper Roof 2**
- **Roof**: General area for roof level installation.
- **Lower Roof 1**
- **Lower Roof 2**
- **PH**: Penthouse area.
- **Glass Roof**: Glass roof area.
- **Screen**: Screen area.
- **Adjacent Slanted Roof 1, 2, 3**: Adjacent slanted roof areas.

**Carrier Color Code**
- **Verizon**: Red
- **Omni**: Gray

**Distance**: +50 ft
### Final Compliant Configuration

<table>
<thead>
<tr>
<th>GUIDELINES</th>
<th>NOTICE</th>
<th>CAUTION</th>
<th>WARNING</th>
<th>NOC INFO</th>
<th>BARRIER/MARKER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alpha</td>
<td>☐[#]</td>
<td>☒[2]</td>
<td>☐[#]</td>
<td>☐[#]</td>
<td>☐[#]</td>
</tr>
<tr>
<td>Beta</td>
<td>☐[#]</td>
<td>☒[1]</td>
<td>☐[#]</td>
<td>☐[#]</td>
<td>☐[#]</td>
</tr>
<tr>
<td>Gamma</td>
<td>☐[#]</td>
<td>☒[1]</td>
<td>☐[#]</td>
<td>☐[#]</td>
<td>☐[#]</td>
</tr>
<tr>
<td>Delta</td>
<td>☐[#]</td>
<td>☒[6]</td>
<td>☐[#]</td>
<td>☐[#]</td>
<td>☐[#]</td>
</tr>
</tbody>
</table>

NOTE: The table above represents EVERY compliance item that MUST be implemented at this location.

c. Signage/Barrier Installation Detail

<table>
<thead>
<tr>
<th>Mitigation /Actions required</th>
<th>GUIDELINES</th>
<th>NOTICE</th>
<th>CAUTION</th>
<th>WARNING</th>
<th>NOC INFO</th>
<th>BARRIER/MARKER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Access Point(s)</td>
<td>☒[6]</td>
<td>☐[#]</td>
<td>☐[#]</td>
<td>☐[#]</td>
<td>☐[#]</td>
<td>☐[#]</td>
</tr>
<tr>
<td>Alpha</td>
<td>☐[#]</td>
<td>☐[#]</td>
<td>☒[2]</td>
<td>☐[#]</td>
<td>☐[#]</td>
<td>☐[#]</td>
</tr>
<tr>
<td>Beta</td>
<td>☐[#]</td>
<td>☐[#]</td>
<td>☒[1]</td>
<td>☐[#]</td>
<td>☐[#]</td>
<td>☐[#]</td>
</tr>
<tr>
<td>Gamma</td>
<td>☐[#]</td>
<td>☐[#]</td>
<td>☒[1]</td>
<td>☐[#]</td>
<td>☐[#]</td>
<td>☐[#]</td>
</tr>
<tr>
<td>Delta</td>
<td>☐[#]</td>
<td>☐[#]</td>
<td>☒[6]</td>
<td>☐[#]</td>
<td>☐[#]</td>
<td>☐[#]</td>
</tr>
<tr>
<td>ADD</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>REM</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
</tbody>
</table>

### SPECIAL MITIGATION INSTRUCTIONS

**Items to be Installed**

- **Roof Access Door**: Install NOC and Guidelines signs
- **Sector A 5G antenna**: Install Notice sign behind the sector at roof level
- **Sector A 4G antenna**: Install Notice sign behind the sector at penthouse level
- **Sector B 5G antenna**: Install Notice sign behind the sector at roof level
- **Sector C 5G antenna**: Install Notice sign behind the sector at roof level
- **Sector D 5G antenna**: Install Notice sign behind the sector at roof level
- **Sector D 4G antenna**: Install physical barrier (14’x11’) at roof level, 6ft away from roof edge
  - Install Notice, Notice left and Notice right signs on the proposed barrier

**Items to be Removed**

N/A

**Items to be Repaired/Replaced**

N/A
5. Appendix A: RF Consultant Certifications

a. Preparer Certification

I, A.H Albaadani, the preparer of this report, am fully aware of and familiar with the Rules and Regulations of both the Federal Communications Commissions (FCC) and the Occupational Safety and Health Administration (OSHA) with regard to Human Exposure to Radio Frequency Radiation. I am also fully aware of and familiar with the Verizon Wireless Signage & Demarcation Policy. I have reviewed this Radio Frequency Exposure Assessment report and believe it to be both true and accurate to the best of my knowledge.

A.H Albaadani

b. Reviewer Certification

I, Ahmed Al Jubouri, the reviewer and approved of this report, am fully aware of and familiar with the Rules and Regulations of both the Federal Communications Commissions (FCC) and the Occupational Safety and Health Administration (OSHA) with regard to Human Exposure to Radio Frequency Radiation. I am also fully aware of and familiar with the Verizon Wireless Signage & Demarcation Policy. I have reviewed this Radio Frequency Exposure Assessment report and believe it to be both true and accurate to the best of my knowledge.

Ahmed Al Jubouri
6. Appendix B: Reference Information

a. FCC Rules & Regulations

The Federal Communications Commission (FCC) has established safety guidelines relating to RF exposure from cell sites. The FCC developed those standards, known as Maximum Permissible Exposure (MPE) limits, in consultation with numerous other federal agencies, including the Environmental Protection Agency, the Food and Drug Administration, and the Occupational Safety and Health Administration. The standards were developed by expert scientists and engineers after extensive reviews of the scientific literature related to RF biological effects. The FCC explains that its standards “incorporate prudent margins of safety.” The following represents explanations of the most applicable information:

### Two Classifications for Exposure Limits

<table>
<thead>
<tr>
<th>Classification</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Occupational</td>
<td>Applies to situations in which persons are “exposed as a consequence of their employment” and are “fully aware of the potential for exposure and can exercise control over their exposure”.</td>
</tr>
<tr>
<td>General Population</td>
<td>Applies to situations in which persons are “exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure”. Generally speaking, those without significant and documented RF Safety &amp; Awareness training would be in the General Population classification.</td>
</tr>
</tbody>
</table>

### Environment Classification

<table>
<thead>
<tr>
<th>Classification</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Controlled</td>
<td>Applies to environments that are restricted or “controlled” in order to prevent access from members of the General Population classification.</td>
</tr>
<tr>
<td>Uncontrolled</td>
<td>Applies to environments that are unrestricted or “uncontrolled” that allow access from members of the General Population classification.</td>
</tr>
</tbody>
</table>

#### Limits for Occupational/Controlled Exposure

<table>
<thead>
<tr>
<th>Frequency</th>
<th>Power Density (S)</th>
<th>Averaging Time (mW/cm²)</th>
<th>Averaging Time (minutes)</th>
</tr>
</thead>
<tbody>
<tr>
<td>300-1500</td>
<td>f/300</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>1500-100,000</td>
<td>5</td>
<td></td>
<td>6</td>
</tr>
</tbody>
</table>

#### Limits for General Population/Uncontrolled Exposure

<table>
<thead>
<tr>
<th>Frequency</th>
<th>Power Density (S)</th>
<th>Averaging Time (mW/cm²)</th>
<th>Averaging Time (minutes)</th>
</tr>
</thead>
<tbody>
<tr>
<td>300-1500</td>
<td>f/1500</td>
<td></td>
<td>30</td>
</tr>
<tr>
<td>1500-100,000</td>
<td>1</td>
<td></td>
<td>30</td>
</tr>
</tbody>
</table>

\( f = \text{frequency in MHz} \)

### Significant Contribution to the RF Environment

Any carrier contributing an aggregate MPE percentage of 5 or more (to the applicable RF Environment Classification) is defined as a significant contributor. This means that if any area is determined to be out of compliance with FCC rules, all significant contributors are jointly responsible for correcting any deficiencies.

b. Occupational Safety and Health Administration (OSHA) Requirements

A formal adopter of FCC Standards, OSHA stipulates that those in the Occupational classification must complete training in the following: RF Safety, RF Awareness, and Utilization of Personal Protective Equipment. OSHA also provides options for Hazard Prevention and Control:

#### Hazard Prevention

- Utilization of good equipment
- Enact control of hazard areas
- Limit exposures
- Employ medical surveillance and accident response

#### Control

- Employ Lockout/Tag out
- Utilize personal alarms & protective clothing
- Prevent access to hazardous locations
- Develop or operate an administrative control program
c. RF Signage

Areas or portions of any transmitter site may be susceptible to high power densities that could cause personnel exposures in excess of the FCC guidelines. These areas must be demarcated by conspicuously posted signage that identifies the potential exposure. Signage MUST be viewable regardless of the viewer’s position.

<table>
<thead>
<tr>
<th>GUIDELINES</th>
<th>NOTICE</th>
<th>CAUTION</th>
<th>WARNING</th>
</tr>
</thead>
<tbody>
<tr>
<td>This sign will inform anyone of the basic precautions to follow when entering an area with transmitting radiofrequency equipment.</td>
<td>This sign indicates that RF emissions may exceed the FCC General Population MPE limit.</td>
<td>This sign indicates that RF emissions may exceed the FCC Occupational MPE limit.</td>
<td>This sign indicates that RF emissions may exceed at least 10x the FCC Occupational MPE limit.</td>
</tr>
</tbody>
</table>

**GUIDELINES**

**NOTICE**

General Radio Frequency (RF) Safety Guidelines

Until all applicable antennas have been deactivated, please observe the following:

- Obey all posted signs.
- Assume all antennas are transmitting.
- Do not stand in front of any antenna.
- Do not sleep in front of any antenna.
- Do not walk in front of any antenna.
- Contact antenna owner or property owner if there are any questions or concerns.

**CAUTION**

Transmitting Antennas Radio frequency fields beyond the point MPE are harmful to the FCC General Population exposure. If you are near a vehicle as a pedestrian worker, limit your exposure time to the area.

- Keep children and pets away from the area.
- Keep personal effects away from the area.
- Do not wear electronic devices near the antennas.
- Do not use electronic devices near antennas.

**WARNING**

Transmitting Antennas Radio frequency fields beyond the point MPE are harmful to the FCC Occupational exposure. Keep all personnel away from the area.

- Keep children and pets away from the area.
- Do not wear electronic devices near the antennas.
- Do not use electronic devices near antennas.

---

**NOC INFORMATION**

Information signs are used as a means to provide contact information for any questions or concerns. They will include specific cell site identification information and the Verizon Wireless Network Operations Center phone number.

---

**d. Physical Barriers**

Physical barriers are control measures that require awareness and participation of personnel. Physical barriers are employed as an additional administration control to complement RF signage and physically demarcate an area in which RF exposure levels may exceed the FCC General Population limit. **Example**: chain-connected stanchions

---

**e. Indicative Markers**

Indicative markers are visible control measures that require awareness and participation of personnel, as they cannot physically prevent someone from entering an area of potential concern. Indicative markers are employed as an additional administration control to complement RF signage and visually demarcate an area in which RF exposure levels may exceed the FCC General Population limit. **Example**: paint stripes