MARRINER S. ECCLES BUILDING AND FEDERAL RESERVE BOARD-EAST BUILDING RENOVATION AND EXPANSION
NATIONAL CAPITAL PLANNING COMMISSION - FINAL REVIEW
MAY 28, 2021
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. PROJECT NARRATIVE</td>
<td>5</td>
</tr>
<tr>
<td>1.1 Project Summary</td>
<td>7</td>
</tr>
<tr>
<td>1.2 Project Objectives</td>
<td>7</td>
</tr>
<tr>
<td>1.3 Agency Description</td>
<td>7</td>
</tr>
<tr>
<td>1.4 NCPC Plans and Policies</td>
<td>7</td>
</tr>
<tr>
<td>1.5 Area Description</td>
<td>9</td>
</tr>
<tr>
<td>1.6 Building Area and Site Coverage</td>
<td>9</td>
</tr>
<tr>
<td>1.7 Description of Proposed Development and Alternatives</td>
<td>10</td>
</tr>
<tr>
<td>1.8 Project Schedule</td>
<td>11</td>
</tr>
<tr>
<td>1.9 Funding</td>
<td>11</td>
</tr>
<tr>
<td>2. OUTREACH AND COORDINATION</td>
<td>13</td>
</tr>
<tr>
<td>2.1 Additional Agency Review</td>
<td>15</td>
</tr>
<tr>
<td>3. DETAILED PROJECT INFORMATION AND DRAWINGS</td>
<td>17</td>
</tr>
<tr>
<td>3.1 Existing Conditions</td>
<td>19</td>
</tr>
<tr>
<td>3.2 Site Context - Photos</td>
<td>20</td>
</tr>
<tr>
<td>3.3 Description of Buildings</td>
<td>26</td>
</tr>
<tr>
<td>3.4 Proposed</td>
<td>26</td>
</tr>
<tr>
<td>3.5 Responses to NCPC Comments Received at Previous Review</td>
<td>26</td>
</tr>
<tr>
<td>3.6 Eccles Building</td>
<td>30</td>
</tr>
<tr>
<td>3.7 FSB-East Building</td>
<td>46</td>
</tr>
<tr>
<td>3.8 Below Grade & Parking</td>
<td>59</td>
</tr>
<tr>
<td>3.9 Plans</td>
<td>54</td>
</tr>
<tr>
<td>3.10 Sections</td>
<td>66</td>
</tr>
<tr>
<td>3.11 Elevations</td>
<td>70</td>
</tr>
<tr>
<td>3.12 Landscape</td>
<td>82</td>
</tr>
<tr>
<td>3.13 Wayfinding</td>
<td>136</td>
</tr>
<tr>
<td>3.14 Exterior Lighting</td>
<td>146</td>
</tr>
<tr>
<td>4. ENVIRONMENTAL AND HISTORICAL CONSIDERATIONS</td>
<td>153</td>
</tr>
<tr>
<td>4.1 Historic Preservation Documentation</td>
<td>155</td>
</tr>
<tr>
<td>4.2 Historic Preservation Goals</td>
<td>155</td>
</tr>
<tr>
<td>4.3 Area of Potential Effect</td>
<td>155</td>
</tr>
<tr>
<td>4.4 Historic Properties Located Within the APE</td>
<td>157</td>
</tr>
<tr>
<td>4.5 Assessment of Effects</td>
<td>157</td>
</tr>
<tr>
<td>4.6 Environmental Documentation</td>
<td>157</td>
</tr>
</tbody>
</table>
1. PROJECT OVERVIEW

1.1 PROJECT SUMMARY

The Board of Governors of the Federal Reserve System (Board) proposes to renovate and expand the Marriner S. Eccles Building (Eccles Building) at 2051 Constitution Avenue NW to accommodate increased building space and construct an addition on the Federal Reserve Board-East Building (FRB-East Building) at 1951 Constitution Avenue NW to accommodate increased staff numbers.

The Eccles building was constructed between 1960 and 1962. The FRB-East Building was constructed between 1987 and 1991 for the US Public Health Service Building. The building has not undergone a comprehensive renovation since its construction. The Board-East Building was constructed between 1810 and 1813 for the United States Public Health Service Building.

The Eccles building is not meeting the Board's needs in its current condition and configuration. A comprehensive renovation and expansion of these buildings is needed to address a critical backlog of upgrades, to respond to changes in building use, and to meet requirements for information technology, building security, environmental sustainability, and energy efficiency. The project will also address increased utility demands, a growing building population, and increased needs to reduce energy consumption and improve indoor environmental quality.

1.2 PROJECT OBJECTIVES

The objectives of the project include:

- Modernizing the Eccles Building and the US Public Health Service Building (now FRB-East)
- Consolidating 1,750 staff on-site and reduce off-site facilities
- Improving collaboration and communication by connecting the Eccles, Martin, and FRB-East buildings and grade and below grade
- Providing a modern, efficient workspace
- Supporting health and wellness initiatives
- Expanding the Board's goal of transparency and openness
- Making the buildings more energy-efficient and environmentally sustainable
- Improving climate change, and promoting non-auto transportation alternatives, including walking, biking.

1.3 AGENCY DESCRIPTION

The Board of Governors, located in Washington, DC and headquartered at the Marriner S. Eccles Building, is the governing body of the Federal Reserve System, its governing board, and is responsible for making important decisions concerning the operation of the Federal Reserve System to promote the goals and fulfill the responsibilities given to the Federal Reserve Board by the US Senate. The Board of Governors guides the operation of the Federal Reserve System to promote the goals and fulfill the responsibilities given to the Federal Reserve Board by the US Senate.

1.4 NCPC PLANS AND POLICIES

The project is consistent with the 2016 update of the Comprehensive Plan For the National Capital, Federal District, and Monuments Core Framework Plan. The project adheres to the NCPC’s Comprehensive Plan by promoting high quality design and development, relationship to community, and security preserving historic properties, protecting the fabric of climate change, and promoting non-auto transportation alternatives, including transit, walking, and bicycling.

The Federal Reserve Board will be consulting with the NCPC as to the extent that the project fits into the following owned buildings:
- Marriner S. Eccles Building
- Federal Reserve Bank-East Building
- 1951 New York Avenue Building
- William M. McChesney Martin, Jr. Building
- Additionally, the Board is currently housed in two leased buildings, including:
 - 1801 K Street
 - 1915 K Street
 - Internation Square

The Martin Building is being currently renovated. Once complete, the Martin Building will become the Board-East Building, completing the construction phase of the proposed project.
1.5 AREA DESCRIPTION

The project area is located in the Foggy Bottom neighborhood of Northwest Washington, DC. Both buildings face south on Constitution Avenue NW across from the National Mall. The Eccles Building occupies the entire block bounded by 21st Street NW on the east, 20th Street NW on the west, and C Street NW on the north. Directly to the west, the FRB-East Building sits on an entire block bounded by 20th Street NW to the east, 19th Street NW to the west, and C Street NW to the north. Completed in the 1930s, both buildings stand prominently within a group of monumental buildings along Constitution Avenue NW that frame the Lincoln Memorial to the southwest.

Located directly to the north of the Eccles Building and northwest of the FRB-East Building is the Board’s William McChesney Martin, Jr. Building, which was completed and dedicated in 1974. The Martin Building will become the primary entrance and security screening area for employees of the Martin, Eccles, and FRB-East buildings.

1.6 BUILDING AREA AND SITE COVERAGE

The approximate existing gross site areas and existing building areas are listed below:

1.6.1 ECCLES BUILDING

- Gross Existing Building Area: 276,000 square feet
- Gross Site Area: 4.16 acres (181,071 square feet)

1.6.2 FRB EAST BUILDINGS

- Gross Existing Building Area: 126,388 square feet
- Gross Site Area: 3.18 acres (138,512 square feet)
1.7 DESCRIPTION OF PROPOSED DEVELOPMENT AND ALTERNATIVES

1.7.1 OPTION A (PREFERRED)

Option A would comprise a comprehensive modernization and expansion of the Eccles Building and FRB-East building that will consolidate groups located in historic spaces while also accommodating future organizational growth.

At the Eccles Building, Option B would construct five-story additions on the east and west sides of the building that will connect the existing buildings with an entrance to the south lawn of the FRB-East Building. Option B also includes a three-story below-grade structure. In order to save heritage site elements, the project will also include the careful dismantling, salvaging, and reconstructing of the center wing to be located under the South Lawn in front of the FRB-East Building.

1.7.2 OPTION B (DISMISSED)

The Board determined that Option C would have a significant negative impact on the historic site as a whole and would not include parking under the south terrace of the FRB-East Building. Consequently, this alternative was dismissed.

1.7.3 OPTION C (DISMISSED)

The Board determined that Option C would have a significant negative impact on the historic site as a whole and would not include parking under the south terrace of the FRB-East Building. Consequently, this alternative was dismissed.

1.7.4 OPTION D (DISMISSED)

The Board determined that Option D would not meet the Board’s program goal to house 1,750 desks, as it would only provide approximately 1,500 desks; it falls approximately 180 desks short. Therefore, this option was dismissed from further consideration.

Funding
The project will be funded by the Federal Reserve. Full construction starting with foundation work is expected to begin in late September 2022 with an estimated duration of 50 months. The project is expected to end prior to 2023/2024 with an estimated duration of 50 months.
2. OUTREACH AND COORDINATION

2.1 ADDITIONAL AGENCY REVIEW

Since May 2019, the Board has held several review meetings with key regulatory agencies, including NCPIC, CFA, and the DD SHPO. The Board also participated in the 2019 District of Columbia Section 106 NOI #13. The project was presented at the 23 July 2020 CFA Concept Review Committee (CRC) meeting. The preferred parking ramp option and five other options were presented and reviewed. While not ideal, the preferred option minimally impacts the bathtub building and provides unobstructed pedestrian movement at grade between the Eccles and FRB East buildings. The CFA voted to reduce the width of the east ramp and add a break between the sidewalk and the ramp within the public space. The revised option was presented at the 29 September 2020 CFA Conceptual Plan Review (CPR) meeting. The CFA then voted to conditionally approve the submitted option. The design team participated in a Preliminary Design Review (PDRM) with DDOT on 19 March 2021 to present the narrowing of 20th St which would reduce usage of the public right-of-way. The changes included perimeter security, utilities, and pedestrian movement at grade between the historic building and landscape and promotes pedestrian movement at grade.

2.2 DC DEPARTMENT OF TRANSPORTATION

On 4 April 2020, FRB team met with DDOT to discuss the potential sewer heat exchange system with DDOT. On 15 May 2020, the design team discussed the potential sewer heat exchange system with DDOT. On 27 May 2021 PSC hearing. The project was presented at the 23 July 2020 CFA Concept Review Committee (CRC) meeting. The preferred parking ramp option and five other options were presented and reviewed. While not ideal, the preferred option minimally impacts the bathtub building and provides unobstructed pedestrian movement at grade between the Eccles and FRB East buildings. The CFA voted to reduce the width of the east ramp and add a break between the sidewalk and the ramp within the public space. The revised option was presented at the 29 September 2020 CFA Conceptual Plan Review (CPR) meeting. The CFA then voted to conditionally approve the submitted option. The design team participated in a Preliminary Design Review (PDRM) with DDOT on 19 March 2021 to present the narrowing of 20th St which would reduce usage of the public right-of-way. The changes included perimeter security, utilities, and pedestrian movement at grade between the historic building and landscape and promotes pedestrian movement at grade.

2.2.1 DDOT

The project was presented at the 23 July 2020 CFA Concept Review Committee (CRC) meeting. The preferred parking ramp option and five other options were presented and reviewed. While not ideal, the preferred option minimally impacts the bathtub building and provides unobstructed pedestrian movement at grade between the Eccles and FRB East buildings. The CFA voted to reduce the width of the east ramp and add a break between the sidewalk and the ramp within the public space. The revised option was presented at the 29 September 2020 CFA Conceptual Plan Review (CPR) meeting. The CFA then voted to conditionally approve the submitted option. The design team participated in a Preliminary Design Review (PDRM) with DDOT on 19 March 2021 to present the narrowing of 20th St which would reduce usage of the public right-of-way. The changes included perimeter security, utilities, and pedestrian movement at grade between the historic building and landscape and promotes pedestrian movement at grade.

2.2.2 DDOT

The project was presented at the 23 July 2020 CFA Concept Review Committee (CRC) meeting. The preferred parking ramp option and five other options were presented and reviewed. While not ideal, the preferred option minimally impacts the bathtub building and provides unobstructed pedestrian movement at grade between the Eccles and FRB East buildings. The CFA voted to reduce the width of the east ramp and add a break between the sidewalk and the ramp within the public space. The revised option was presented at the 29 September 2020 CFA Conceptual Plan Review (CPR) meeting. The CFA then voted to conditionally approve the submitted option. The design team participated in a Preliminary Design Review (PDRM) with DDOT on 19 March 2021 to present the narrowing of 20th St which would reduce usage of the public right-of-way. The changes included perimeter security, utilities, and pedestrian movement at grade between the historic building and landscape and promotes pedestrian movement at grade.

2.2.3 DDOT

The project was presented at the 23 July 2020 CFA Concept Review Committee (CRC) meeting. The preferred parking ramp option and five other options were presented and reviewed. While not ideal, the preferred option minimally impacts the bathtub building and provides unobstructed pedestrian movement at grade between the Eccles and FRB East buildings. The CFA voted to reduce the width of the east ramp and add a break between the sidewalk and the ramp within the public space. The revised option was presented at the 29 September 2020 CFA Conceptual Plan Review (CPR) meeting. The CFA then voted to conditionally approve the submitted option. The design team participated in a Preliminary Design Review (PDRM) with DDOT on 19 March 2021 to present the narrowing of 20th St which would reduce usage of the public right-of-way. The changes included perimeter security, utilities, and pedestrian movement at grade between the historic building and landscape and promotes pedestrian movement at grade.

2.2.4 DC WATER

The project was presented at the 23 July 2020 CFA Concept Review Committee (CRC) meeting. The preferred parking ramp option and five other options were presented and reviewed. While not ideal, the preferred option minimally impacts the bathtub building and provides unobstructed pedestrian movement at grade between the Eccles and FRB East buildings. The CFA voted to reduce the width of the east ramp and add a break between the sidewalk and the ramp within the public space. The revised option was presented at the 29 September 2020 CFA Conceptual Plan Review (CPR) meeting. The CFA then voted to conditionally approve the submitted option. The design team participated in a Preliminary Design Review (PDRM) with DDOT on 19 March 2021 to present the narrowing of 20th St which would reduce usage of the public right-of-way. The changes included perimeter security, utilities, and pedestrian movement at grade between the historic building and landscape and promotes pedestrian movement at grade.

2.3 NPS

The Board and FORTUS met with the NPS on 21 May 2021 to review the current design as it relates to Reservation 188. The NPS indicated that the proposed work will not have an adverse effect on the parcel and anticipates no additional finding under Section 106 of the National Historic Preservation Act. The NPS also noted that additional efforts may be required to complete a categorical exclusion under NEPA.

2.4 NATIONAL PARKS SERVICE

The Board and FORTUS met with the NPS on 21 May 2021 to review the current design as it relates to Reservation 188. The NPS indicated that the proposed work will not have an adverse effect on the parcel and anticipates no additional finding under Section 106 of the National Historic Preservation Act. The NPS also noted that additional efforts may be required to complete a categorical exclusion under NEPA.
3. Detailed Project Information and Drawings

3.1 Existing Conditions

3.1.1 Eccles Building

The Eccles Building is located on three (3) tax lots owned by the federal government that form a contiguous property bounded by C Street NW to the north, 21st Street NW to the east, Constitution Avenue NW to the south, and 21st Street NW to the west. Together, the three (3) lots form a property with a cumulative recorded area of 181,071 square feet (4.16 acres). Approximately 66 percent of the property is impervious area comprising of building structure, driveways, site walkways and hardscape, and fountain plaza areas. The remaining portion of the site is permeable area consisting of turf, landscaping, and vegetation.

The northern half of the property consists of an H-shaped building with two interior courtyards. An elevated landscaped plaza is located on the southern half of the property. Site topography generally slopes down from the north to the south portion of the site, though the building’s interior courtyards are lower than the adjacent street elevations. The topography surrounding the Eccles Building ranges between 29 feet above sea level at the northwest quadrant, down to 19 feet above sea level at the southeast quadrant.

The landscape on the Eccles Building site is very well maintained. The grounds have a high exposure to the public given its Constitution Avenue address and the historical significance of the building.

3.1.2 FRB-East Building

The FRB-East Building is located on a single tax lot bounded by an adjacent, National Park Service-owned property to the north, 19th Street NW to the west, Constitution Avenue NW to the south, and 21st Street NW to the east. This property has a recorded area of 138,512 square feet (3.18 acres). Approximately 65 percent of the property is impervious area comprising of building structure, parking lot, site walkways, and hardscape. The remaining portion of the site is permeable area consisting of turf, landscaping, and vegetation.

The northern half of the property consists of an E-shaped building with a asphalt surface parking lot adjacent to the north side. An elevated landscaped plaza is located on the southern half of the property. Site topography generally slopes down from the north to the south along the building’s entrance. The asphalt surface parking lot is lower in elevation than the adjacent street and green spacealevels. The landscape includes a set-back from Constitution Avenue, raised landscape and building terraces, a formal walkway, and areas evenly aligned on the building entrance.

Figure 3-1: Eccles Building South Facade and Terrace

Figure 3-2: FRB-East Building South Facade and Terrace
3.2 SITE CONTEXT - PHOTOS

Figure 3.2: Site Context

1. Constitution Ave View East
2. Eccles Building NW View
3. Eccles Building Fountain
4. Eccles Building Fountain
5. Eccles Building South Facade
6. C St West View
7. 14th St View
8. 14th St View
9. 14th St View
10. 14th St View
11. 14th St View
12. 14th St View
13. 14th St View
14. 14th St View
15. 14th St View
16. 14th St View
17. 14th St View
18. 14th St View
10. Eccles Building West Courtyard Entry
11. 20th St North View
12. Constitution Ave West View
13. FRB-East Building South Facade
14. Constitution Ave View West
15. FRB-East Building East Facade
16. Virginia Ave and 19th St View
17. FRB-East Building South Facade
18. Constitution Ave View West

FEDERAL RESERVE BOARD
MARRINER S. ECCLES BUILDING AND FEDERAL RESERVE BOARD-EAST BUILDING | NATIONAL CAPITAL PLANNING COMMISSION

FINAL REVIEW

10. Eccles Building West Courtyard Entry
11. 20th St North View
12. Constitution Ave West View
13. FRB-East Building South Facade
14. Constitution Ave View West
15. FRB-East Building East Facade
16. Virginia Ave and 19th St View
17. FRB-East Building South Facade
18. Constitution Ave View West
The Marriner S. Eccles Building (Eccles Building) was built in 1935-1937 as the headquarters of the Federal Reserve Board. French-born Philadelphia architect Paul Cret designed the building, which was one of several new monumental buildings built along Constitution Avenue that fronts the National Academy of Sciences Building (1924) to the west. The E-shaped building is three stories with a central wing of white Georgia marble that combined a classical vocabulary and plan inspired by Neoclassicism, "the result was a classically proportioned monumental building of white Georgia marble that combined a classical vocabulary and plan inspired by Neoclassicism."

Since its completion in 1933, several government agencies have occupied the building. The Public Health Service designating the building shortly after its construction and was used for an addition on its north facade for dental training. The Public Health Service was the building for the Board of Governors and later for the Board. The building housed the Economic Research, Statistics, the National Science Foundation, and most recently the Department of the Treasury. The Board acquired the building in 2019.

As several different agencies and organizations occupied the building since Construction, both the FRB-East and the FRB-East Federal Reserve Building have been modified. Numerous times to accommodate each organization's need. The FRB-East Building was constructed from 1931 to 1933 as the headquarters of the Board. French-born Philadelphia architect Paul Cret designed a monumental building of white Georgia marble that combined a classical vocabulary and plan inspired by Neoclassicism. The two-level structure included a central hall and north and south wings. The central wing, which faced Constitution Avenue, was three stories. The north and south wings faced 20th Street. In the master-proposed building, the central hall and north and south wings faced Constitution Avenue. The central hall and north and south wings faced 20th Street. In the master-proposed building, the central hall and north and south wings faced Constitution Avenue. The central hall and north and south wings faced 20th Street.
Although the Eccles Building was designed as an office building for a government agency and not a banking institution per se, permanence, stability and security were spatially conceived through the planned and designed triple lines of defense for perimeter security. The concept of the expanded Eccles Building and addition to the Federal Reserve Board-East Building will create a new ensemble of buildings that form the Board’s heritage and historic landscape on the National Mall with a contemporary architecture and expression that speaks directly to the evolving culture and important role in facilitating the nation’s financial systems.

3.4 DEVELOPMENT AND IMPROVEMENTS

Key elements that have changed since the NCPC location on the National Mall with a contemporary buildings that link the Board’s heritage and historic expanded Eccles Building and addition to the FRB-East Security were symbolically conveyed through the new designs.

Although the Eccles Building was designed as an historic building, the Board and design team are committed to replant in accordance with all of DDOT’s tree replacement policy. The Board is committed to replant in accordance with NCPC’s tree replacement policy. NCPC requests the Board submit a tree-planting plan as shown on the included plans and noted that it is difficult to discern, but there is a slight line visible from Constitution Avenue or the National Mall.

The design team will respond to any findings/requests coming out of the Section 106 process.

Section 106 process to further minimize the loss or alternation of historic and character-defining landscape features. NCPC recommends the Board soften the hard edge of the wall between the sidewalk and ramp with an articulation of the wall between the sidewalk and ramp in addition to the other benefits previously mentioned.

One of the benefits to narrowing 20th Street is the creation of a street for its use, not just a thoroughfare for public use will be located on the building rooftops. There will be two small antennas for public use will be located on the building rooftops. There will be two small antennas

Section 106 process to evaluate the scale of the building facades are included in this submission. An exterior lighting plan and for the grounds and landscape plan, lighting, and perimeter security.

A detailed wayfinding plan along with representation images are included in this submission.

Wayfinding NCPC supports the Board’s approach to wayfinding and voiced support for the major wayfinding plan.

General Comments NCPC supports the Board’s additional consultation with all consulting parties regarding the proposed design and refinement to the perimeter security, utilities, and street narrowing.

Since the preliminary submissions there have been three additional meetings with the consulting parties.

Lighting NCPC supports the Board’s approach to exterior lighting for the perimeter security for perimeter security, utilities, and street narrowing.

An exterior lighting plan for the perimeter security, utilities, and street narrowing.

Wayfinding NCPC supports the Board’s approach to wayfinding and voiced support for the major wayfinding plan.

General Comments NCPC supports the Board’s additional consultation with all consulting parties regarding the proposed design and refinement to the perimeter security, utilities, and street narrowing.

Since the preliminary submissions there have been three additional meetings with the consulting parties.
3.6 ECCLES BUILDING

3.6.1

The existing building will be maintained, and high-curvature spaces, features, and materials will be preserved to his greatest possible extent.

The exterior of the historic building will be preserved and updated for security (front lobby, interior garden, modernization, seismic performance, and energy performance).

Five-story atria will be constructed on the east and west sides of the building, connecting the current north and south wings.

A Level 4 addition will be constructed on the roof of the south wing that will connect the east and west atria through extensive below grade. The addition will expand the Level C2 with exterior corridors under the existing building and courtyards allowing for additional program below grade.

All existing systems within the building will be completely replaced. All existing systems within the building will be maintained, and high-curvature spaces, features, and materials will be preserved to his greatest possible extent. This will include installing a new concrete foundation wall three feet outboard of the existing foundation, connecting the existing north and south wings. The recess at Level 1 will create a small forecourt incorporating with lighting and building identification system.

3.6.2 ECCLES BUILDING INFILL ADDITIONS

The primary goal of the infill additions is to maintain the original rhythm of Cret’s original design. The intervention will build on the materiality of Cret’s original design. The infill additions proposed on each side of the Eccles Building will respond to—and maintain—the civic scale and strong focus on proportion and “restraint in detail.”

The proposed infill additions for Eccles Building will respond to the original design, the masonry articulation and rhythm of Cret’s original design. The intervention will build on the materiality of Cret’s original design. The infill additions proposed on each side of the Eccles Building will respond to—and maintain—the civic scale and strong focus on proportion and “restraint in detail.”

The infill additions will respond to—and maintain—the civic scale and strong focus on proportion and “restraint in detail.” The intervention will build on the materiality of Cret’s original design.
PERSPECTIVE FROM 21ST STREET AND C STREET LOOKING EAST

CHARACTER DEFINING FEATURES

Figure 3-3: Double height bronze windows with Alberene stone spandrel panels

Figure 3-4: Bronze railing detail

Figure 3-5: Cornice (white Georgia marble)
3.6.4 Skylights

Atrium Skylights

The existing east and west courtyards—currently used as service courtyards and access to the Governor’s parking on the east side and occupied by temporary spaces on the west side will be converted to atria: the east atrium will become a building entrance for staff and VIPs and a circulation node between the Eccles Building, the Martin Building, and the FRB-East Building. The west atrium will become a restorative garden for Eccles Building staff that could also be utilized for Board events. Integrating skylights over the courtyards to create atria presents a number of unique challenges. Within the space, these challenges include maintaining the appearance of the center wing of the Eccles Building as a pavilion and keeping the cornice line at Level 4 with its decorative cast bronze railing. At the same time, it is necessary to minimize the greatest visual impact of the skylights along Constitution Avenue. Other challenges include detailing the skylights to provide a proper building enclosure and meet security requirements.

To balance these competing demands, the skylight design will frame the center wing symmetrically, will maintain the bronze handrails and cornice line at Level 4 and push vertical plane on the south side of the atrium into the courtyard. This will minimize the skylights visibility from Constitution Avenue. The proposed framing for the skylights is a very a calm, almost ethereal square grid with large format glass that is designed to complement, but not upstage the walls Cret designed for the courtyard. The renderings illustrate how the large rectangular frame will subdivide the space into twelve equal spaces in salute of the Federal Reserve’s branch banks. Each branch bank will be recognized with their name engraved in glass panels. This will pick up on the spirit of Cret’s original design of the center hall of the historic building where the names are engraved in stone above twelve doors on Level 2.
Center Wing Skylight

The 1977 center-wing office additions will be partially removed, and the natural light shaft will be restored to the existing laylight over the center wing/grand stair. The new skylight has been relocated from the roof of the center wing down to Level 4. There are several advantages to this approach, including creating a more uniform design in the three wings of the building, introducing more natural light to the restoration, and the instrumentation that will be below, i.e., introducing natural light to the perimeter walls of the natural light shaft, which will be pleasant. Please see figure 3-11.

3.6.5 Accessible Lobby Ramp

A new accessible ramp from the Constitution Avenue lobby will be provided from the interior corridor. The existing plaque niche will frame a new opening from the lobby into the new ramp. The plaque will be removed and stored. Please see figure 3-10 and 3-11.

3.6.6 B4000

The historically significant Level 4 lounge and adjoining executive dining rooms currently have an eighteen-inch level change between the entry hall and the lounge suite. The proposed project will extend the elevated floor slab to the north, relocate the existing marble stairs and provide a new accessible ramp along the west side of the entry hall to the level of the lounge suite. Additionally, the Governor's private elevator will be extended to discharge at the dining suite level. The proposed design includes the removal of some of the upper portion of wood wall panels in the lounge. Removed panels will be salvaged and stored. Please see figure 3-12.

3.6.7 Historic Corridors

Modifications will be made at areas of intersection between historically significant spaces and work space to balance preservation and modern office needs. Please see figure 3-13 for perspective views. Different strategies for the central corridors relate to the hierarchy of importance and level of finish at each floor.

• Level 1: The corridors will be retained in the south wing, with modifications to the existing openings to relate to the new rhythm of enclosed and open offices. The corridors at the north wing will be retained for a length to provide a view of the historic condition from the C Street lobby, after which they will be removed. The plaster cornice and cove was removed and the plaster will be retained to provide a view from C Street.

• Level 2: The corridors will be retained at Level 2 as the most important floor and highest level of finish, all corridors will be retained at this level. Only minor modifications will be made to existing openings in the Governor's wing. Greater modifications will be made to the north wing to relate to the new rhythm of enclosed office suites. The original light fixtures will be retained throughout the floor. The large non-historic cove will be replaced with smaller profile cove with integral LED lighting and art rail.

• Level C1, Level 3, and Level 4: Most corridor walls will be removed to provide the greatest flexibility for workplace layout. Original flooring and plaster will be retained and Level 3 will be salvaged and stored. Please see figure 3-12.

Figure 3-9: Perspective View of Eccles Building Center Wing Skylight

Figure 3-10: Perspective View of Eccles Building Accessible Lobby Ramp and Threshold

Figure 3-11: Perspective View of Eccles Building Accessible Lobby Ramp and Corridor
Figure 3-12: Perspective View of Eccles Building Level 4 Lounge

Figure 3-13: Perspective View of Eccles Building Level 2 Historic Corridor
The existing operable aluminum windows will be completely replaced with high-performance, blast-resistant fixed aluminum window units to match the existing sightlines and appearance of the existing windows, and to achieve the Board’s design, security, and energy requirements. The existing decorative cast aluminum systems covering the window openings will be salvaged, restored, and reinstalled. The existing center wing of the historic building will be preserved and upgraded for security (blast mitigation), seismic performance, and energy performance.

The exterior of the historic building will be preserved and upgraded for security (blast mitigation), seismic performance, and energy performance.

The center wing of the historic building will be preserved and upgraded for security (blast mitigation), seismic performance, and energy performance.

The addition to the FRB-East Building will respond to the articulation of the historic FRB East Public Building Service Building, which is also clad in Georgia marble. The five-story addition will align with the historic building in height and roofline. The addition will be lined with glazed spandrel panel, and the sill. The addition will be clad in marble laminated within insulating glass. The eave line in the addition will correspond with the eave line of the historic building. The mechanical equipment in the penthouse will be minimized and placed to nearly flush with the roofline of the addition. White marble. The new five-story addition will align with Level 5 of the Eccles Building.

The addition to the FRB-East Building is intended to accommodate and retain future needs of the Board. In combination with the work that will be completed between the existing building and the new addition, the Board’s recently acquired and currently vacant area between the existing building east and west wings for another 406,000 GSF of area. The addition will connect to the Eccles Building via an underground pedestrian concourse located at Level 5 of the Eccles Building. The mechanical equipment in the penthouse will be minimized and placed to nearly flush with the roofline of the addition. White marble. The new five-story addition will align with Level 5 of the Eccles Building.

The center wing of the historic building will be preserved and upgraded for security (blast mitigation), seismic performance, and energy performance.

The addition will physically connect to the east and west wings of the existing building and will include three levels below grade, which will include Level 5 of the Eccles Building, which is also clad in Georgia marble to match the historic building. The corners and the base of the building will be white Georgia marble. The new five-story addition will align with Level 5 of the Eccles Building.

The primary goal for the exterior design of the addition to the FRB-East Building is to create a meaningful and appropriate building form, responding to the architecture of the historic building. The material strategy for the addition continues to maintain the overall white tonality of the Georgian style and use of contemporary materials.

With the exception of the corners, the historic building has a consistent bay spacing of 4.8-foot-wide spandrel and 6.6-foot-wide window openings. The addition will use a similar cadence, with two-story-high, 18-foot-wide window openings at the historic building’s pilasters) and 9-foot-wide window openings. The addition will be lined with glazed spandrel panel, and the sill.

The material strategy for the addition continues to maintain the overall white tonality of the Georgian style and use of contemporary materials.

With the exception of the corners, the historic building has a consistent bay spacing of 4.8-foot-wide spandrel and 6.6-foot-wide window openings. The addition will use a similar cadence, with two-story-high, 18-foot-wide window openings at the historic building’s pilasters) and 9-foot-wide window openings. The addition will be lined with glazed spandrel panel, and the sill.

The material strategy for the addition continues to maintain the overall white tonality of the Georgian style and use of contemporary materials.

With the exception of the corners, the historic building has a consistent bay spacing of 4.8-foot-wide spandrel and 6.6-foot-wide window openings. The addition will use a similar cadence, with two-story-high, 18-foot-wide window openings at the historic building’s pilasters) and 9-foot-wide window openings. The addition will be lined with glazed spandrel panel, and the sill.

The material strategy for the addition continues to maintain the overall white tonality of the Georgian style and use of contemporary materials.

With the exception of the corners, the historic building has a consistent bay spacing of 4.8-foot-wide spandrel and 6.6-foot-wide window openings. The addition will use a similar cadence, with two-story-high, 18-foot-wide window openings at the historic building’s pilasters) and 9-foot-wide window openings. The addition will be lined with glazed spandrel panel, and the sill.

The primary goal for the exterior design of the addition to the FRB-East Building is to create a meaningful and appropriate building form, responding to the architecture of the historic building. The material strategy for the addition continues to maintain the overall white tonality of the Georgian style and use of contemporary materials.

With the exception of the corners, the historic building has a consistent bay spacing of 4.8-foot-wide spandrel and 6.6-foot-wide window openings. The addition will use a similar cadence, with two-story-high, 18-foot-wide window openings at the historic building’s pilasters) and 9-foot-wide window openings. The addition will be lined with glazed spandrel panel, and the sill.
3.7.4 Skylights

The existing east and west courtyards will be combined into a single atrium, which will house a food service operation, conference functions, and flexible primary building circulation. The new atrium at the FRB-East Building will incorporate a custom-fabricated high-performance glazed skylights with a consistent formal and material language, which will deliver design uniformity among the Eccles and the FRB-East Buildings. The FRB-East Building’s skylight will be situated at the Level 4 roof elevation to reduce the impact at the existing sloped roof, and to conceal the skylight from view from Constitution Avenue.

Like the skylight in Eccles Building, the formal and material language of the skylights will be simple and quiet—compatible and subordinate to the existing building. Large-format glazing panels (approx. eleven feet by eleven feet) will be supported by a simple grid of framing that responds to the structural rhythm of the existing building. For reasons of design continuity, the skylight has similar design expression as the Eccles Building skylights. The glazing panels will incorporate a ceramic frit that will balance the energy performance of the atria with a desire for daylight levels similar to the existing outdoor space.
A new accessible entry ramp into the Constitution Avenue lobby space will be provided from the Level 1 corridor. The existing historic opening at the east side of the lobby will be reopened to provide an entry into the ramp. Please see figure 3-14.

3.7.5 Accessible Lobby Ramp

3.7.6 Historic Corridors

Modifications will be made at areas of intersection between historically significant spaces and work space to balance preservation and modern office needs. The central corridor will be retained along the south side of the building as an entry to relate to the central stair and elevator lobby, as well as the former Surgeon General’s office. Along the east and west wings, the corridor location will remain but the walls will be removed to allow for open, flexible workspace. Within the office corridors that remain, most existing interior office partitions throughout Preservation Zone 3 will be removed to accommodate workspace renovations. Existing wood doors and metal frames will be restored. The oak doors which remain a medium brown and the metal frames will be stained a medium brown and grained to match the oak finish. Please see figure 3-15.

3.7.7 Terrazzo Floors

The existing terrazzo flooring in the corridors and the cinder fill substrate will be removed due to its poor condition. A new light weight concrete topping slab and new epoxy terrazzo flooring will be installed to match in-kind the existing pattern and color. Please see figure 3-15.
As part of the modernization of the existing FRB-East Building, new air handling units (AHUs) and energy recovery units (ERUs) will be located on the existing Attic Level and will distribute conditioned air to the floors below through newly created mechanical shafts. In order to accommodate the equipment sizes, height clearances and required outside air ventilation louvers, the design proposes to expand the remaining portion of the historic elevator machine room penthouse symmetrically to the east and west. This height of the new penthouse will match the historic penthouse height which is a few inches below the existing roof ridgeline. The expanded penthouse enclosure will only be visible from the new addition side; it will not be seen from Constitution Avenue or The National Mall. The penthouse will be clad with a metal plate rainscreen system in a medium gray color to match the adjacent existing roof clay tiles. The goal is to differentiate the new construction from the historic building with a contemporary material but not draw attention to it when viewed from the new addition interior offices levels. Please see figure 3-16.

3.7.9 ANTENNAS

There will be two small pole-mounted rooftop antennas that will project a few feet past the top of the new addition penthouse screen wall. One is a donor antenna (approximately 17” w x 8” h x 1.5” d) required for emergency response by the District of Columbia and the other is a directional antenna (approximately 8” w x 10” h x 2.5” d) required to support internal law enforcement radio communications. Both will be located towards the center of the FRB-East addition penthouse enclosure and will not be visible from Constitution Avenue or The National Mall. There will be no commercial cellular carrier rooftop antennas for public use located on the building rooftops. Please see figure 3-15.
3.8 Below Grade & Parking

At the street level, the Eccles Building and FRB-East Building are connected by 20th Street NW. Below grade however, both buildings will be connected by a new pedestrian concourse and service/utility tunnel. There will be a new underground passage below 20th Street that directly connects the Eccles Building to the FRB-East Building. Currently, the Eccles Building and FRB-East Building are connected by a tunnel located under C Street. The new pedestrian concourse will connect all three buildings and facilitate communication, permitting staff and escorted visitors to move freely between buildings without having to go through security screening at each building.

The new service and utility tunnel will connect the loading dock, located on the northeast corner of the FRB-East Building addition, to all three buildings and can be accessed via a service elevator. The new service and utility tunnel will connect the Eccles and FRB-East Buildings and tie into the existing utility tunnel between the Eccles Building and the Martin Building.

The project includes a three-story below-grade, 194,800 GSF structure of which three stories will be dedicated to parking. The structure will have a L-shaped configuration below 20th Street and the south lawn in front of the existing FRB-East Building. The structure will meet a parking ratio of one space for every five employees (1:5). The current Governors’ parking garage in the Eccles Building will become space for future program. The new parking garage will contain a secure entrance dedicated to housing the Governors’ parking and security vehicle fleet that will be displaced from the Eccles Building.

Access to the parking garage will be provided through single lane ramps that will be integrated into the existing historic building terrace of the FRB-East Building. The ramps will exit onto 20th Street via an existingBut expanded curvilinear ramp that crosses immediately south of the proposed loading dock driveway. This suit of curving expansion is accommodating both the exit of the parking garage and the loading dock. 19th Street is a southbound and will be retaining right-of-way at the curving ramp where cars will be entering the garage.

The east ramp will ascend on 20th Street, which is a southbound street. It will be accessed from 19th Street via an existing but expanded curb cut that merges immediately south of the proposed loading dock driveway. The exit ramp will be accessed from 19th Street via a single lane ramp that is integrated into the existing historic building terrace of the FRB-East Building. The ramp will be accessed from 19th Street via a single lane ramp that will be integrated into the existing historic building terrace of the FRB-East Building. The ramp will be accessed from 19th Street via an existing but expanded curb cut that merges immediately south of the proposed loading dock driveway. This suit of curving expansion is accommodating both the exit of the parking garage and the loading dock.

The exit ramp will be accessed from 19th Street via a single lane ramp that will be integrated into the existing historic building terrace of the FRB-East Building. The ramp will be accessed from 19th Street via a single lane ramp that will be integrated into the existing historic building terrace of the FRB-East Building. The ramp will be accessed from 19th Street via an existing but expanded curb cut that merges immediately south of the proposed loading dock driveway. This suit of curving expansion is accommodating both the exit of the parking garage and the loading dock.

The exit ramp will be accessed from 19th Street via a single lane ramp that will be integrated into the existing historic building terrace of the FRB-East Building. The ramp will be accessed from 19th Street via a single lane ramp that will be integrated into the existing historic building terrace of the FRB-East Building. The ramp will be accessed from 19th Street via a single lane ramp that will be integrated into the existing historic building terrace of the FRB-East Building. The ramp will be accessed from 19th Street via a single lane ramp that will be integrated into the existing historic building terrace of the FRB-East Building. The ramp will be accessed from 19th Street via an existing but expanded curb cut that merges immediately south of the proposed loading dock driveway. This suit of curving expansion is accommodating both the exit of the parking garage and the loading dock.
If the motor protrudes into the acoustic barrier, the acoustic barrier must be built around it. Construction as per ASTM E557, by others.

diagram with measurements and specifications

sections 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12

office screening
atrium
fitness conference room
dining room
mechanical room
pedestrian concourse
auditorium
cistern
pantry

3.10 Sections

low iron glazing
acid etched glazing
metal oil rubbed bronze
georgia white marble

5.16

12' - 9" 13' - 9" 16' - 9" 13' - 6" 15' - 6" 17' - 6"

15' - 9" 12' - 9" 19' - 0" 15' - 0" 12' - 6" 16' - 8"
Figure 3-19: Aligning with Datum Lines of Eccles Building

Figure 3-20: Continuing Datum Lines and Cadence of FRB-East Building

Figure 3-21: Reproducing FRB-East Building through the use of white Georgian marble

Figure 3-22: Reproducing FLIB-East Building through the use of white Georgian marble

Figure 3-23: Reproducing flush corners of FRB-East Building

3.11 Elevations
Figure 3-24: Constitution Avenue Elevation

Figure 3-25: C Street Elevation

CONTEXTUAL ELEVATIONS
Figure 3-28: West Elevation

Figure 3-29: East Elevation

Figure 3-30: West Elevation

Figure 3-31: East Elevation
ECCLES BUILDING MATERIAL BOARD

STONE
- MARBLE (POLISHED & HONED ‘WHITE GEORGIA’)
- WHITE GEORGIA MARBLE INTERLAYER

GLAZING
- LOW-IRON GLAZING
- MARBLE (POLISHED AND HONED ‘GEORGIA WHITE’)
- COATED ALUMINUM

METAL
- RANGE OF STAINLESS STEEL FINISHES (BEAD BLAST AND DIRECTIONAL)
- COATED ALUMINUM (US10A)
- RANGE OF OIL-RUBBED BRONZE (US10B: DARK TO LIGHT)

FRB-EAST BUILDING MATERIAL BOARD

STONE
- MARBLE (POLISHED & HONED ‘WHITE GEORGIA’)

GLAZING
- LOW-IRON GLAZING
- MARBLE (POLISHED AND HONED ‘GEORGIA WHITE’)
- COATED ALUMINUM

METAL
- RANGE OF STAINLESS STEEL FINISHES (BEAD BLAST AND DIRECTIONAL)
3.2 LANDSCAPE

The Marriner S. Eccles Building and FRB-East Building are both set within classically inspired landscapes along Constitution Avenue, and part of a series of five buildings with similar classical form facing the Avenue. Both buildings are also in the Northwest Rectangle Historic District. The two buildings are separated by the character-defining features of the current parametric layout with geometrically ordered gardens on either side of a central walk leading up a flight of steps to the elevated garden and up additional steps to the front steps entry of each building.

The Eccles Building site south and is set south approximately 240 feet from Constitution Avenue. The site design was completed by Architect Paul Phillipe Cret and his studio. The edges of the site were set by an axial focal point for the open spaces. The west courtyard has a building at its center.

The FRB-East Building landscape was designed by Robert Whitehead and Stanley Stevens, who developed a scheme that was inspired by the original design. The design is based on a symmetrical composition of the landscape, with a series of symmetrical terraces, paths, and shrubs flanking the building. Vegetation was designed to balance the weight of the building, frame views, and allow for the open character of the building.

3.2.1 EXISTING ECCLES/LANDSCAPE

The Eccles Building site design was completed by Architect Paul Phillipe Cret and his studio. He designed the landscape to incorporate the building’s classical style, symmetrical order, and balance with the building. Vegetation was designed to be in the landscape today. Circulation routes and paths are perpendicular and parallel to the axis formed by the building’s main entrance. Walls and plantings are symmetrical to provide an axial focal point for the open spaces. The west courtyard has a building at its center.

The original design from the 1930s is evident in the landscape today. Circulation routes and paths are perpendicular and parallel to the axis formed by the building’s main entrance. Walls and plantings are symmetrical, and large stepped granite blocks, fountains of black granite surrounded by pebble pavements, courtyards with small fountains and detailed plantings, reveal a human-scaled design.

Changes to the landscape since the 1930s are relatively minor, including additions of bollards and vehicular barriers. The south and west sides of the building are restricted by vehicular access to two courtyards at the edges. The design incorporated multiple scales and paths are perpendicular and parallel to the axis formed by the building’s main entrance. Walls and plantings are symmetrical, and large stepped granite blocks, fountains of black granite surrounded by pebble pavements, courtyards with small fountains and detailed plantings, reveal a human-scaled design.

The detail found in the metalwork and stonework throughout the site exhibit the original workmanship and historic materials used in the construction. A characteristic of Cret’s design was the use of Southern magnolias along the building’s south side. The detail found in the metalwork and stonework throughout the site exhibit the original workmanship and historic materials used in the construction.

The original design from the 1930s is evident in the landscape today. Circulation routes and paths are perpendicular and parallel to the axis formed by the building’s main entrance. Walls and plantings are symmetrical, and large stepped granite blocks, fountains of black granite surrounded by pebble pavements, courtyards with small fountains and detailed plantings, reveal a human-scaled design.

Changes to the landscape since the 1930s are relatively minor, including additions of bollards and vehicular barriers. The south and west sides of the building are restricted by vehicular access to two courtyards at the edges. The design incorporated multiple scales and paths are perpendicular and parallel to the axis formed by the building’s main entrance. Walls and plantings are symmetrical, and large stepped granite blocks, fountains of black granite surrounded by pebble pavements, courtyards with small fountains and detailed plantings, reveal a human-scaled design.

The detail found in the metalwork and stonework throughout the site exhibit the original workmanship and historic materials used in the construction.

3.2.2 EXISTING FRB EAST/LANDSCAPE

The FRB-East Building landscape was designed by Robert Whitehead and Stanley Stevens, who developed a scheme that was inspired by the original design. The design is based on a symmetrical composition of the landscape, with a series of symmetrical terraces, paths, and shrubs flanking the building. Vegetation was designed to balance the weight of the building, frame views, and allow for the open character of the building.

Changes to the landscape since the 1930s are relatively minor, including additions of bollards and vehicular barriers. The south and west sides of the building are restricted by vehicular access to two courtyards at the edges. The design incorporated multiple scales and paths are perpendicular and parallel to the axis formed by the building’s main entrance. Walls and plantings are symmetrical, and large stepped granite blocks, fountains of black granite surrounded by pebble pavements, courtyards with small fountains and detailed plantings, reveal a human-scaled design.

The detail found in the metalwork and stonework throughout the site exhibit the original workmanship and historic materials used in the construction.

Changes to the landscape since the 1930s are relatively minor, including additions of bollards and vehicular barriers. The south and west sides of the building are restricted by vehicular access to two courtyards at the edges. The design incorporated multiple scales and paths are perpendicular and parallel to the axis formed by the building’s main entrance. Walls and plantings are symmetrical, and large stepped granite blocks, fountains of black granite surrounded by pebble pavements, courtyards with small fountains and detailed plantings, reveal a human-scaled design.

The detail found in the metalwork and stonework throughout the site exhibit the original workmanship and historic materials used in the construction.

The Marriner S. Eccles Building and FRB-East Building are both set within classically inspired landscapes along Constitution Avenue, and part of a series of five buildings with similar classical form facing the Avenue. Both buildings are also in the Northwest Rectangle Historic District. The two buildings are separated by the character-defining features of the current parametric layout with geometrically ordered gardens on either side of a central walk leading up a flight of steps to the elevated garden and up additional steps to the front steps entry of each building.

Changes to the landscape since the 1930s are relatively minor, including additions of bollards and vehicular barriers. The south and west sides of the building are restricted by vehicular access to two courtyards at the edges. The design incorporated multiple scales and paths are perpendicular and parallel to the axis formed by the building’s main entrance. Walls and plantings are symmetrical, and large stepped granite blocks, fountains of black granite surrounded by pebble pavements, courtyards with small fountains and detailed plantings, reveal a human-scaled design.

The detail found in the metalwork and stonework throughout the site exhibit the original workmanship and historic materials used in the construction.

Changes to the landscape since the 1930s are relatively minor, including additions of bollards and vehicular barriers. The south and west sides of the building are restricted by vehicular access to two courtyards at the edges. The design incorporated multiple scales and paths are perpendicular and parallel to the axis formed by the building’s main entrance. Walls and plantings are symmetrical, and large stepped granite blocks, fountains of black granite surrounded by pebble pavements, courtyards with small fountains and detailed plantings, reveal a human-scaled design.

The detail found in the metalwork and stonework throughout the site exhibit the original workmanship and historic materials used in the construction.
EXISTING TREE ANALYSIS | TREE HEALTH & SIZE

- Existing tree analysis
- Tree health & size
- Limits of building demolition and trees to remain

LIMITS OF BUILDING DEMOLITION AND TREES TO REMAIN
EXISTING SECURITY MEASURES & DETERRANTS

Eccles | Heavy Bronze Bollards at South Lawn Terrace

FRB-East | 20th St NW with no Street Trees or Planting at Curb

Eccles | Heavy Bronze Bollards at 20th St NW near Accessible Entrance

FRB-East | Sloped Planting Area at Historic Terrace along 19th St NW

Eccles | South Terrace Gardens

FRB-East | South Lawn Terrace & Gardens

Eccles | Building/Service Entrance at 20th St NW

FRB-East | Vehicular Entrance at 20th St NW

EXISTING CONDITIONS
Street Trees to be removed and replaced

Street Trees to be removed and replaced.

3.2.3 Landscape and Streetscape

Street Trees to be removed and replaced.

Overall Vegetation (not building specific)

The proposed planting designs will involve plants selected to thrive in the local/regional site conditions and to increase species diversity while retaining the character of the significant historic landscape. Native and well-adapted plants will be selected whenever possible. The design includes a tree preservation strategy that will seek to protect as many healthy existing trees as possible. Tree protection strategies may include fences protecting tree root zones, temporary measures to prevent soil compaction and root damage where tree protection fencing is not practical, pruning, fertilization, air spading, or root pruning.

New tree plantings within the terrace will utilize large-caliper trees, 12 to 15 inches. These trees will be replaced with plantings that better match the original design intent and are well adapted to the local environmental conditions.

20th Street NW will be completely removed and replaced between Constitution Avenue and C Street due to underground garage and tunnel construction.

20th Street is proposed to be narrowed from the existing 42'-0" wide to 32'-6" wide to create a more pedestrian oriented street that relates to the historic L’Enfant plan width and centerline. This adjustment creates additional sidewalk area for tree plantings in the east side of 20th Street, a planted buffer along the garage and canopy, and green space. This will also allow to create a safer condition for pedestrians.

A new raised mid-block crossing on 20th Street NW will connect the Martin Building and Eccles Building, joining the existing tunnel direct to the north. An underground garage and tunnel construction will be necessary for this approach to take place. A precedent for this approach exists in the area between the Martin Building and the Eccles Building on C Street, which has pavers crossing over the street in front of the main entrance to the Eccles Building.

The streetscape and sidewalks will be completely removed and replaced due to detectance FFRB construction activities and the removal and replacement of all curbs and sidewalks. Newly designed curbs and sidewalks will conform to the 20th Street curbs and drainage will be determined and completely revised to conform to UDC standards as mentioned above, but all other curbs and sidewalks will remain in place to the extent possible. Portions of curbs will be replaced at sidewalks, curb ramps, and for alignment reasons.

The flat side of the trunk entering the soil suggests that this street tree has a belowground girdling root.

Figure 13: An oak exhibiting poor structure. Most scaffold branches originate near the same area of the trunk, and many are oriented vertically with bark inclusions present. Branching and a clear leader for most of its height. Compare to Figure 14.

Note the many large pruning cuts near the same area. These pruning cuts create a major wound that will become life-limiting. This tree also exhibits an excessive lean. Woundwood formation suggests good vigor, but this is a major wound that will become life-limiting. This tree also exhibits an excessive lean. Woundwood formation suggests good vigor, but this is a

LANDSCAPE AND STREETSCAPE

Figure 14: Basal damage and decay on an oak. Extensive stripping and decay on the outer bark. Basal damage, Gloomy scale, and have restricted rooting area.

Typical Condition: Many of the street trees show physical signs of basal decay, pruning wounds, and new growth issues which may limit growth. Street trees have restricted planting areas. Limited opportunity to increase sidewalk width. Regrowth of street trees is restricted by concrete curbs. Limited opportunity for green space.

Average Caliper: +/- 9"

Average health: Moderate to poor

Street Trees to be removed and replaced for unforeseen reasons.
Perimeter security

The existing bronze-clad perimeter security system around the Eccles Building will be replaced by a cable rail system similar to one installed at the Department of Commerce. It will be more compatible and less onerous than the existing. A new perimeter security system is proposed at FRB-East Building as one does not currently exist. The proposed approach to site perimeter security will integrate cable rail with anti-ram bollards at entrances, anti-ram knee walls, and other site elements. The appearance of security barriers around the campus and their effects on the historic integrity of the FRB Buildings will be minimized through screening and softening with planting, incorporation into site amenities, and integration of multiple barrier types.

Street tree replacement in the right-of-way will follow DDOT requirements. Removal and replacement of sidewalks will require replacement of street trees with the exception of very large trees along Constitution Avenue. Street trees will as along Constitution Avenue will be replaced with 6- to 8-inch caliper trees. Most existing DDOT street tree volumes will be left in place for significant trees and other great aesthetic value. Trees in the right-of-way will be under drained, irrigated, and include aeration systems. Select larger species and two trees will be removed and replaced since no security and construction activities related to the garage and vehicular ramp at FRB-East Building have been completed. Trees will be replaced with 4.5 to 5 inch caliper trees along Constitution Avenue. Street trees not along Constitution Avenue will be replaced with 4.5 to 5 inch caliper trees. Minimum DDOT street tree soil volumes will be met or exceeded by providing structural soil or other systems if required in selected areas.

PERIMETER SECURITY ON STREET SIDE OF SIDEWALK

STEEP PLANTED SLOPES

4' planted buffer, typical

Walk abuts garage ramp wall

PERIMETER SECURITY shifts into planting area

bollards in planting retaining wall

Planted buffer increased to 6', typical

perimeter security integrated into signage wall

Planting buffer at garage ramp wall

perimeter security integrated into historic curb

More SPACE FOR STAIRS - more SPACE AT LOWER LANDING

Officer post within planting area

Increased RUN OF GARAGE RAMP PERPENDICULAR TO STREET

FEDERAL RESERVE BOARD

MARRINER S. ECCLES BUILDING AND FEDERAL RESERVE BOARD – EAST BUILDING | NATIONAL CAPITAL PLANNING COMMISSION

Proposed design: matches 1931 curblines and centerline | 32'-6" CURB-TO-CURB

Street tree replacement in the right-of-way will follow DDOT requirements. Removal and replacement of sidewalks will require replacement of street trees with the exception of very large trees along Constitution Avenue. Street trees will as along Constitution Avenue will be replaced with 6- to 8-inch caliper trees. Most existing DDOT street tree volumes will be left in place for significant trees and other great aesthetic value. Trees in the right-of-way will be under drained, irrigated, and include aeration systems. Select larger species and two trees will be removed and replaced since no security and construction activities related to the garage and vehicular ramp at FRB-East Building have been completed. Trees will be replaced with 4.5 to 5 inch caliper trees along Constitution Avenue. Street trees not along Constitution Avenue will be replaced with 4.5 to 5 inch caliper trees. Minimum DDOT street tree soil volumes will be met or exceeded by providing structural soil or other systems if required in selected areas.

3.12.4 Perimeter Security

The existing bronze-clad perimeter security system around the Eccles Building will be replaced by a cable rail system similar to one installed at the Department of Commerce. It will be more compatible and less onerous than the existing. A new perimeter security system is proposed at FRB-East Building as one does not currently exist. The proposed approach to site perimeter security will integrate cable rail with anti-ram bollards at entrances, anti-ram knee walls, and other site elements. The appearance of security barriers around the campus and their effects on the historic integrity of the FRB Buildings will be minimized through screening and softening with planting, incorporation into site amenities, and integration of multiple barrier types.

Site plan - 20th street narrowing - Comparison

Previous design (preferred) matches existing curb lines

Proposed design: matches existing curb lines and centerline

Increased buffer between historic wall and perimeter security

Increased tree planting area (6')

3.12.4 Perimeter Security

The existing bronze-clad perimeter security system around the Eccles Building will be replaced by a cable rail system similar to one installed at the Department of Commerce. It will be more compatible and less onerous than the existing. A new perimeter security system is proposed at FRB-East Building as one does not currently exist. The proposed approach to site perimeter security will integrate cable rail with anti-ram bollards at entrances, anti-ram knee walls, and other site elements. The appearance of security barriers around the campus and their effects on the historic integrity of the FRB Buildings will be minimized through screening and softening with planting, incorporation into site amenities, and integration of multiple barrier types.

Site plan - 20th street narrowing - Comparison

Previous design (preferred) matches existing curb lines

Proposed design: matches existing curb lines and centerline

Increased buffer between historic wall and perimeter security

Increased tree planting area (6')

3.12.4 Perimeter Security

The existing bronze-clad perimeter security system around the Eccles Building will be replaced by a cable rail system similar to one installed at the Department of Commerce. It will be more compatible and less onerous than the existing. A new perimeter security system is proposed at FRB-East Building as one does not currently exist. The proposed approach to site perimeter security will integrate cable rail with anti-ram bollards at entrances, anti-ram knee walls, and other site elements. The appearance of security barriers around the campus and their effects on the historic integrity of the FRB Buildings will be minimized through screening and softening with planting, incorporation into site amenities, and integration of multiple barrier types.
The proposed approach to site perimeter security will integrate a combination post-and-rail system, anti-ram bollards at entrances and where pedestrian movements are expected, and in some cases, anti-ram knee walls to architecturally integrate the system. Wedge barriers are being utilized at the exit ramp on 20th Street and the garage and service entry point off of 19th Street. Anti-ram bollards with an updated sleek and modern profile will be erected around the perimeter at both the Eccles and FRB-East buildings. Bollards outside of building entrances in areas of paving and adjacent to arrival plazas will be solitary anti-ram structures. Bollards that are not within areas of paving or adjacent to arrival plazas will have a post and chain design similar to the National Park Service post and chain detail that is present along Constitution Avenue at Constitution Gardens. At the new entrances off 20th Street, the anti-ram bollards are proposed to meet lighting requirements and to avoid adding additional fixtures to the fabric composition.

Existing Site Retaining Wall as a Barrier

The proposed approach to site perimeter security will integrate a combination post-and-rail system, anti-ram bollards at entrances and where pedestrian movements are expected, and in some cases, anti-ram knee walls to architecturally integrate the system. Wedge barriers are being utilized at the exit ramp on 20th Street and the garage and service entry point off of 19th Street. Anti-ram bollards with an updated sleek and modern profile will be erected around the perimeter at both the Eccles and FRB-East buildings. Bollards outside of building entrances in areas of paving and adjacent to arrival plazas will be solitary anti-ram structures. Bollards that are not within areas of paving or adjacent to arrival plazas will have a post and chain design similar to the National Park Service post and chain detail that is present along Constitution Avenue at Constitution Gardens. At the new entrances off 20th Street, the anti-ram bollards are proposed to meet lighting requirements and to avoid adding additional fixtures to the fabric composition.
New officer’s posts will be provided to replace the existing Federal Reserve Board Law Enforcement Unit (LEU) guard booths. Fortus has developed six new officer’s posts: two are located at the south lawn of the Eccles Building (to replace the existing), two are located at the south lawn of the FRB-East Building (to replace the existing), and two are located at the garage ramps of the FRB-East Building. The officer’s posts are complementary to the design principles that have been established at the new additions: quiet, restrained, transparent, and recognizable as new additions to the historic landscapes. Additionally, the officer’s posts are intended to blend in with the landscape to the greatest extent possible. The officer’s posts at the south lawn are identical: composed of full-height glazing panels on a simple steel frame, with a low-profile roof edge. The officer’s posts at the garage ramps are nearly identical, but are integrated with the perimeter security walls, and include a short canopy at one side. The officer’s posts at the garage ramps are situated within the public right-of-way, and are designed as temporary structures that can be removed in the future.
TREE PLANTING - QUANTITIES, SPECIES, AND CALIPER SIZE

STREET TREES

Quercus coccinea (Scarlet Oak) - quantity: 20
Quercus rubra (Red Oak)
Quercus phellos (Willow Oak) - quantity: 63
Ulmus Americana 'VALLEY FORGE' ('VALLEY FORGE AMERICAN Elm') - quantity: 4

MAGNOLIA VIRGINIANA

UNDERSTORY

Magnolia virginiana - Sweetbay Magnolia - quantity: 8
Prunus Pendula 'Pendula Rosea' - Weeping Cherry - Quantity: 1

GROVE TREES

Liriodendron Tulipifera - Tulip Poplar - AMERICAN QUARTER
Tilia Americana - American Basswood
Paulownia Tomentosa - Paulownia

FEDERAL RESERVE BOARD
FORTUS

FINAL REVIEW

MARRINER S. ECCLES BUILDING AND FEDERAL RESERVE BOARD-EAST BUILDING | NATIONAL CAPITAL PLANNING COMMISSION
3.12.6 Eccles Landscape

The project will preserve some landscape character-defining features of the Eccles Building landscape while rehabilitating circulation to create universally accessible routes, improving perimeter security (described in the perimeter security section), modifying the east and west courtyards, and a portion of the fountain gardens. The proposed design retains the symmetrical site layout, a part with geometrically ordered gardens on each side of a central walk leading up a flight of steps to elevated front gardens. Pathways will provide access to the lawn and garden terrace from the southwest and southeast corners with new walkways. The two fountain gardens will be accessible by sloped walks from the south that will replace existing stairs. The existing historic pebble stone mosaic paving surface material may not meet ADA requirements, and the new pathways will improve the accessibility into garden.

Other landscape elements will be removed, salvaged, and rebuilt in original locations. Portions of the east fountain garden will have to be removed and rebuilt due to the extent of underground work. The marble walkway at the edge of the building’s south façade will be salvaged and rebuilt to accommodate the below-grade foundation work on the building. Bioretention areas are proposed south of the marble walkway in place of the row of magnolias that will be removed to help satisfy stormwater requirements.

Bioretention areas will be located a minimum of 10 feet from the south side of the Eccles Building. Planting in bioretention areas will include native species that tolerate higher levels of saturation as well as dry conditions. More traditional shrub will be planted in the perimeter of the bioretention areas based on the historical design. Other new tree elements that will be salvaged and rebuilt include the marble arch at the east side, the entrances on the east, west, and south sides, and the runway steps and bronze light fixtures at the north entrance.
PROPOSED PLANT PALETTE

WEST - LAWN
- Summer Fescue
- Tall Fescue
- Tall Fescue Mix
- Annual Rye
- Kentucky Bluegrass
- Tussock Sedge
- Tall Fescue
- Soft Rush

SOUTH - BIORETENTION
- Soft Rush
- Tussock Sedge
- Switchgrass
- Hemlock Hedge

EXISTING GARDEN
- Existing Garden
- Existing Garden
- Weeping Cherry
- Azalea
- Existing Garden
- Existing Garden
- Existing Garden

ECCELS

- Constitution Avenue looking north and east

MARRINER S. ECCLES BUILDING AND FEDERAL RESERVE BOARD-EAST BUILDING | NATIONAL CAPITAL PLANNING COMMISSION

Plan Enlargement
The proposed landscape design reflects the formality and symmetry of the historic design, while addressing program-related needs related to creating a new main building entrance, improving universal accessibility, and achieving site security. The proposed changes include:

1. **Building Terrace Replacement**: The building terrace and the south lawn will be replaced with new garden spaces. Historic site and building materials shall be cataloged, salvaged, protected, cleaned, and reinstalled. Some modifications are required due to the existing garage ramps and service areas.

2. **New Main Building Entrance**: An accessible route will be provided by creating a sloped walkway at the SE and SW corners of the site to get up to the existing garden terrace elevation. Small walls are required to manage the grade transitions. A new permeable parking area will be created to the north of the proposed entrance to accommodate new garage ramps.

3. **Employee Use Terrace**: A new sunken outdoor terrace in the northwest corner of the site for employee use, adjacent to the entry, will help activate the corner of 20th Street and C Street. The terrace will have movable furniture and will be bordered by a linear water feature on the west side of the plaza that faces east onto the main building entry. The water feature will be subtle and inward-facing so it will not compete with the more monumental fountains along Constitution Avenue. The perimeter security line has been integrated into the surrounding stone retaining walls that accommodate building emergency egress and double as fall protection to create a clean and simple landscape expression.

4. **Gardens Terrace**: The South Garden Terrace will include new large tree plantings to replace the trees that were removed in the spirit of the original tree configuration. Historic site and building materials shall be cataloged, salvaged, protected, cleaned, and reinstalled. Some modifications are required due to the existing garage ramps and service areas.

5. **Improved Site Security**: New permeable pavement will be installed in the garden areas to manage the grade transitions. New large tree plantings will be installed in the garden areas to replace the trees that were removed in the spirit of the original tree configuration. An accessible route will be provided by creating a sloped walkway at the SE and SW corners of the site to get up to the existing garden terrace elevation. Small walls are required to manage the grade transitions. A new permeable parking area will be created to the north of the proposed entrance to accommodate new garage ramps.
3.12.8 National Park Service (NPS) Triangle

NPS Property Impacts & Improvements

North of the FRB-East addition, the property is owned by the National Park Service (NPS). The building addition related construction will directly impact the property in a few ways, however, the design team is proposing several improvements to mitigate those impacts to the NPS property and to the adjacent R.O.W.

Impacts to the NPS property include the excavation related to building addition foundations, installation of perimeter security system and corresponding foundations (described in the perimeter security section), utility improvements, steam tunnel related alterations and an emergency egress path from the north facade of the building in place of the existing circulation from the existing parking area. These improvements will disrupt the existing tree root systems and walkway along the edge of the property. To design team proposes to remove and plant a new row of trees and install a continuous planting buffer at the ground plane on the NPS property to minimize visual impacts as well as to create a buffer between the two properties. The row of trees will align with the C Street trees between the 21st and 20th Streets reinforcing the historic roadway alignment and framing views to the future memorial site. These trees could potentially be removed at a later date should the NPS decide to make property improvements, however, the design team has been coordinating with the National Park Service to discuss and review all improvements.

Utility Infrastructure

See Figure 3-6 for the Utility Routing Diagram that shows the utility impacts to NPS property. Sizes, routes, and connection points are subject to DC agency approval and final engineering.

Below is a brief description of each utility.

Wastewater Heat Recovery

Wastewater Heat Recovery (WWHR) will connect to the 11'-3" existing brick sewer in the public right of way. Two 16" pipes will traverse NPS property for supply and return. The location is pending flow tests for 11'-3" soil sewer.

Stormwater

One 24" pipe will connect to the 11'-3" brick sewer outside of NPS property, however, this stormwater line will cross the NPS property. A drain basin and two (2) 6" storm pipes will be on NPS property and will provide runoff drainage for the wall between NPS and FRB property. From the drain basin, a 15" line will connect to the combined sewer with a direct connection in NPS property.

Telecom Line

A telecom ductbank may traverse NPS property to connect to a telecom manhole within Virginia Ave.

R.O.W. Improvements

Currently the sidewalk at the intersection of 19th Street NW and Virginia Avenue NW is constricted and inaccessible due to existing traffic signals, a fire hydrant, and curb ramps crossing the sidewalk as seen in Figure 3-5. These improvements also include installing a widened accessible sidewalk with a continuous planter strip along 19th Street to create a vegetated buffer from vehicular traffic.

In addition, the team is coordinating with construction entities to close up the corner of 19th Street and Virginia Avenue and to reinstallation of the traffic control boxes to a better location.
Eccles Vegetated Roof

The Eccles building will have two pairs of vegetated roof spaces. To the north the east and west spaces are limited to a simple rectilinear extensive type system, serving areas that is not accessible to building users. Access will only be for maintenance of the system. The pair to the south will be larger with more intricate planting and occupiable space. Paved areas created by using a suspended paver system will be furnished with moveable tables and chairs and planters. Planted areas will be supported by an extensive to semi-intensive vegetated roof system. Maximum occupiable space is not planned to exceed 735sf per terrace.

FRB-East Vegetated Roof

The FRB-East Building will have one pair of linear vegetated roof spaces along the northeast and northwest corners of the building addition. Both roof terraces will be accessible and will serve to create usable outdoor spaces for building users. Occupiable paved areas created by using a suspended paver system will be furnished with moveable tables and chairs and planters. Planted areas will be supported by an extensive to semi-intensive vegetated roof system.

The south garden terrace above the proposed underground garage and facades on a vegetated roof and slope depths and volumes will support the growth of larger canopy trees, shrubs, perennial plantings and lawns.

Vegetated Roofs

Both extensive and semi-intensive system will be provided to support a vegetated roof terrace with varied volumes ranging from 3" to 8" on average and planters to 36" where structures can accommodate them. Roof plantings will include planting drought tolerant and can support urban wildlife and pollinators.

Historic Precedent for Water Spouts in Wall

Figure 3-52: Vegetated Roof Views

Figure 3-7: Vegetated Roof Views
3.3 WAYFINDING

Our goal is to identify and develop appropriate exterior signage and wayfinding elements that emphasize the Federal Reserve’s civic importance. These elements will complement the campus exterior by remaining sensitive to the design, materials and finishes of each building’s façade.

Guided by the existing and newly designed architecture the exterior signage will use contemporary materials and processes that respect the historic features of each building while creating a cohesive and unified campus-wide wayfinding system.

The following pages reflect our proposed signage for the Federal Reserve campus exterior. Anticipated signage types consist of a building name at the main entry of both Eccles and FRB-East buildings, an inlaid Federal Reserve Board seal at the Eccles main entry, a commemorative corner stone at the FRB-East entry, and inlaid typographic bands in the pavers leading to the main entries of both Eccles and FRB-East buildings.

![Figure 3-53: Eccles - Entry Sign Detail](image)

![Figure 3-54: Eccles - Entry Sign Side View](image)

![Figure 3-55: Eccles - Signage At 20th Street Connection / Building Entry](image)

![Figure 3-56: Inspiration Imagery](image)
Figure 3-57: Inspiration Imagery

Figure 3-58: Plan View of Seal Location

Figure 3-59: Section View

Figure 3-60: Paver Seal Plan Detail

Figure 3-61: Paver Seal Detail

Fabricated Entirely From Dark Bronze Metal Inlaid Into Stone Pavers

Figure 3-62: Plan Detail Seal

Fabricated Entirely From Dark Bronze Metal Inlaid Into Stone Pavers
Figure 3-69: Plan View - Inlaid Typographic Paver at Eccles Main Entry Provides Campus-wide Branding for FRB Entrances NTS

Figure 3-70: Detail
Dark Bronze Text Inlaid Into Custom Stone Paving Band
(TEXT TO BE CONFIRMED)

Key Plan

FRB-East - Typographic Paver Band

Figure 3-71: Plan View - Inlaid Typographic Paver at FRB-East Building Main Entry Provides Campus-wide Branding for FRB Entrances NTS

Figure 3-72: Detail
Stainless Steel Text With Bead Blast Finish Inlaid Into Custom Stone Paving Band
(TEXT TO BE CONFIRMED)
148

posts’ roofs and on the Level 5 south roof (just hidden from normal-situation views on officer’s lighting in addition to deployment of retractable lights consists of an all-on bright-white preset of all exterior static 2700K LEDs for consistent safe circulation.

and base-of-wall toe-kick details will be lamped with temporarily programmed to colored light. Pathway tunable color façade and fountain lights may be hours. For special or ceremonial occasions, the 5000K at early evening to dimmed incandescent- will automatically transition from crisp-water-white twilight and later hours. Fountain feature lighting will automatically transition from incandescent-color 2700K at early evening to more circadian- and star-gazing-centric transition from incandescent-color 2700K during the period conducive to star-gazing – astronomical twilight and later hours. Fountain feature lighting will automatically transition from incandescent-color 2700K at early evening to more circadian- and star-gazing-centric transition from incandescent-color 2700K during the period conducive to star-gazing – astronomical twilight and later hours. Fountain feature lighting will automatically transition from incandescent-color 2700K at early evening to more circadian- and star-gazing-centric transition from incandescent-color 2700K during the period conducive to star-gazing – astronomical twilight and later hours. Fountain feature lighting will automatically transition from incandescent-color 2700K at early evening to more circadian- and star-gazing-centric transition from incandescent-color 2700K during the period conducive to star-gazing – astronomical twilight and later hours. Fountain feature lighting will automatically transition from incandescent-color 2700K at early evening to more circadian- and star-gazing-centric transition from incandescent-color 2700K during the period conducive to star-gazing – astronomical twilight and later hours. Fountain feature lighting will automatically transition from incandescent-color 2700K at early evening to more circadian- and star-gazing-centric transition from incandescent-color 2700K during the period conducive to star-gazing – astronomical twilight and later hours. Fountain feature lighting will automatically transition from incandescent-color 2700K at early evening to more circadian- and star-gazing-centric transition from incandescent-color 2700K during the period conducive to star-gazing – astronomical twilight and later hours. Fountain feature lighting will automatically transition from incandescent-color 2700K at early evening to more circadian- and star-gazing-centric transition from incandescent-color 2700K during the period conducive to star-gazing – astronomical twilight and later hours. Fountain feature lighting will automatically transition from incandescent-color 2700K at early evening to more circadian- and star-gazing-centric transition from incandescent-color 2700K during the period conducive to star-gazing – astronomical twilight and later hours.
Figure 3-74: Perspective FRB-East Building From 20th Street Nighttime

Figure 3-75: Southwest Axonometric View of Eccles Building

Figure 3-76: Northeast Axonometric View of Eccles Building

Lighting LEGEND

1. Eagle Sculpture Lighting
 RGBw color tunable luminaires mounted on the low roof

2A. Facade Lighting
 RGBw color tunable flush ingrade spots to highlight columns; RGBw color tunable flush ingrade linear wash lights in recesses; RGBw color tunable surface mounted linear wash lights to create walls

2B. Facade Lighting
 RGBW color tunable flush ingrade linear wash lights in walkways; RGBW color tunable surface mounted linear wash lights on cornice

2C. Facade Lighting
 RGBw color tunable low profile, surface mounted, linear wash lights on cornice

2E. Facade Lighting
 RGBw color tunable low profile, surface mounted, linear wash lights on roof behind parapet

2F. Facade Lighting
 RGBw color tunable flush ingrade spots to highlight columns; RGBw color tunable flush ingrade linear wash lights in recesses

3. ACTIVATED ROOF TERRACE Lighting
 Low level static white linear LED lighting in toe-kick detail perimeter

4A. FLAG POLE Lighting (ECCLES BUILDING)
 Static white spots mounted on the roof

5A. SECURITY Lighting
 Motorized lights [qty.8] that rise up and over parapet when needed

5B. SECURITY Lighting (Officer’s POST)
 Roof-top motorized flood lights concealed behind parapet when not in use, recessed linear LED luminaires inside structure

5C. SECURITY Lighting (Officer’s POST)
 Recessed linear LED luminaires in canopy overhang and inside structure

6A. FOUNTAIN Lighting
 RGBWA Color tunable lights for center jet; RGBWA Color tunable lights around drip line from bowl

7. STAIR and RAMP Lighting
 Static white illuminated handrails at all ramp, steps and stairs (require remote drivers in in-grade boxes)

8. WEST/EAST ENTRY Lighting
 Static white illuminated handrails on ramps, in-grade uplights for gate and wall lighting on east/west face

10. Historic Lanterns
 Restored and refurbished luminaires with RGBw color tunable light sources

11. LIGHT BLADE LUMINAIRES
 Luminous detail integrated with new walls with RGBw color tunable light sources
Lighting Legend

2A. Facade Lighting
RGBw color tunable flush ingrade spots to highlight columns; RGBw color tunable flush ingrade linear wash lights in area awning.

2B. Facade Lighting
RGBW color tunable flush ingrade linear wash lights in walkways; RGBW color tunable surface mounted linear wash lights in area awning.

2C. Facade Lighting
RGBw color tunable low profile, surface mounted, linear wash lights on cornice.

2G. Facade Lighting
RGBW color tunable flush ingrade linear wash lights in sidewalks.

3. Activated Roof Terrace Lighting
Low level static white linear LED lighting in toe-kick detail perimeter.

5C. Security Lighting (Officer’s Post)
Recessed linear LED luminaires in canopy overhang and inside structure.

5B. Security Lighting (Officer’s Post)
Roof-top motorized flood lights concealed behind parapet when not in use; recessed linear LED luminaires inside structure.

5D. Security Lighting
Static white, flush uplights embedded in pavement for undercarriage inspection.

10. Torchiere Luminaires
Restored and refurbished luminaires with RGBw color tunable light sources.

6B. Fountain Lighting
RGBWA Color tunable lights for each jet and basin.

4B. Flag Pole Lighting (FRB-East Building)
Low profile static white LED spot lights on flat roof behind ridge.

7. Stair and Ramp Lighting
Static white illuminated handrails at all ramp, steps and stairs (require remote drivers in ingrade boxes).

Figure 3-77: Southeast Axonometric View of FRB-East Building

Figure 3-78: Northwest Axonometric View of FRB-East Building

[THIS PAGE HAS BEEN INTENTIONALLY LEFT BLANK]
ENVIRONMENTAL AND HISTORICAL CONSIDERATIONS
4. ENVIRONMENTAL AND HISTORICAL CONSIDERATIONS

4.1 HISTORIC PRESERVATION DOCUMENTATION

The Board initiated Section 106 with the DC Historic Preservation Office (DC SHPO) on 8 August 2019. A combined public scoping meeting and Section 106 scoping parties meeting was held on 17 September 2019. At the introduction of the project, an additional combined public and consulting parties meeting was held on 14 October 2019, to review the undertaking and to solicit feedback regarding potential adverse effects on historic properties and discuss potential effects from the proposed undertaking. A Final Consultation Parties meeting was held on 17 March 2020 to provide an update on the project. An additional combined public and consulting parties meeting was held on 17 March 2020 to provide an update on the project, the findings of the draft Assessment of Effects, and discuss potential mitigation measures. The complete responses to previous comments and included a draft of the Memorandum of Agreement to all consulting parties on 25 May 2021, with revised comments on 1 June 2021.

EXCELSIOR BUILDING

The Eccles Building was listed in the DC Inventory of Historic Sites in 1964. The property is part of the historic Edgewood-Federal Triangle neighborhood and contributes to the National Register-eligible Northwest Rectangle Historic District. The FRB-East Building, historically the United States Public Health Service Building, was listed in the DC Inventory of Historic Sites in 1964, the year of the inventory's establishment. The Eccles Building was one of the initial 289 buildings designated. An inventory form was not prepared for the building at the time. Although not formally entered for listing in the National Register of Historic Places, the building is being treated as eligible, with significance determined under Criteria A and C. The nomination was based on its significance as a major local example of Neoclassical Architecture, as a significant example of Paul Cret's work. The property also meets National Register Criterion C, as an excellent example of classically inspired federal architecture in the US. The FRB-East building contributes to the National Register-eligible Northwest Rectangle Historic District.

FRB-EAST BUILDING

The FRB-East Building, formerly the United States Public Health Service Building, was listed in the DC Inventory of Historic Sites and the National Register of Historic Places in 2007. The property meets National Register Criterion A, for its association with the growth of the US Public Health Service and as an example of the development of monumental buildings along Constituent Avenue built in accordance with the McMillan Plan in the early decades of the 20th century. The FRB-East Building is also listed under Criterion C, as an excellent example of classically inspired federal architecture in the US. The building contributes to the National Register-eligible Northwest Rectangle Historic District.

4.2 HISTORIC PRESERVATION GOALS

The project proposes the most comprehensive renovation of the Eccles and FRB-East Buildings that can occur with our original construction. The project includes extensive work on both buildings to address the fundamental conservation and treatment needs of these historically significant properties. The project is intended to sensibly manage change to significant spaces, features and materials to the greatest extent possible.

4.3 AREA OF POTENTIAL EFFECT

The Area of Potential Effect (APE) for this project includes the site of the proposed undertaking, as well as the area from which resources that could be impacted as a result of the project are readily visible, particularly along major streets and vistas. The APE is roughly bounded by 23rd Street NW on the south, and 21st Street NW on the east. This local area is referred to as the 23rd Street NW corridor. The Board provided a draft of the Memorandum of Agreement to all consulting parties on 25 May 2021, with revised comments on 1 June 2021.
4.4 **HISTORIC PROPERTIES LOCATED WITHIN THE APE**

Sections 106 regulations define a historic property as any prehistoric or historic district, site, building, structure, or object included in, or eligible for inclusion in, the National Register of Historic Places (NRHP). The identification of historic properties was accomplished through an analysis of existing documentation and consultation with the DC SHPO. The project is located in a dense urban setting or primarily federal and semi-public institutions that has been well documented through historic resource surveys and National Register documentation. Table 4.1 provides a list of identified historic properties within the APE.

<table>
<thead>
<tr>
<th>NAME OF PROPERTY</th>
<th>LOCATION</th>
<th>DESIGNATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Marriner S. Eccles Building</td>
<td>2051 Constitution Avenue NW, DC</td>
<td>US Public Health Building (FRB-East Building)</td>
</tr>
<tr>
<td>FRB-East Building</td>
<td>1951 Constitution Avenue NW, DC</td>
<td>NRHP</td>
</tr>
<tr>
<td>Northwest Rectangle Historic District</td>
<td>Constitution Avenue, 17th, E, and 23rd Streets NW</td>
<td>NRHP-Eligible</td>
</tr>
<tr>
<td>L’Enfant Plan of the City of Washington</td>
<td>DC, NRHP</td>
<td>DC, NRHP</td>
</tr>
<tr>
<td>Northwest Rectangle Historic District</td>
<td>Capitol Grounds on the east, Independence Avenue/Potomac River on the south, the Potomac River to the west, and Constitution Avenue on the north</td>
<td>DC, NRHP</td>
</tr>
<tr>
<td>Seventeenth Street Historic District</td>
<td>17th Street NW, west side between New York and Constitution avenues</td>
<td>DC</td>
</tr>
<tr>
<td>American Pharmacists Association</td>
<td>2215 Constitution Avenue NW, DC</td>
<td>NRHP</td>
</tr>
<tr>
<td>National Academy of Sciences</td>
<td>2101 Constitution Avenue, DC, NRHP</td>
<td>DC, NRHP</td>
</tr>
<tr>
<td>Harry S. Truman Federal Building (US Department of State Building)</td>
<td>2201 C Street NW, NRHP Eligible</td>
<td>DC, NRHP</td>
</tr>
<tr>
<td>Reservation 378</td>
<td>Virginia Avenue between 20th Street NW and 21st Street NW</td>
<td>NRHP Eligible</td>
</tr>
<tr>
<td>General Jose de San Martin Memorial</td>
<td>Reservation 106 (Virginia Avenue and 20th Street NW)</td>
<td>NRHP</td>
</tr>
<tr>
<td>Office of Personnel Management (Theodore Roosevelt Federal Building)</td>
<td>1900 E Street NW, NRHP-Eligible</td>
<td>DC, NRHP</td>
</tr>
<tr>
<td>US Department of the Interior (New Interior Building)</td>
<td>1849 C Street NW, DC, NRHP</td>
<td>DC, NRHP</td>
</tr>
<tr>
<td>Pan American Union Administration Building (Annex)</td>
<td>1801 Constitution Avenue NW, NRHP-Eligible</td>
<td>DC, NRHP</td>
</tr>
<tr>
<td>Van Ness House Stables</td>
<td>18th & C Streets, NW, DC, NRHP</td>
<td>DC, NRHP</td>
</tr>
<tr>
<td>Organization of American States (Pan American Union)</td>
<td>17th Street and Constitution Avenue NW</td>
<td>NRHP</td>
</tr>
<tr>
<td>Vietnam Veterans Memorial</td>
<td>West Potomac Park</td>
<td>NRHP</td>
</tr>
<tr>
<td>Lincoln Memorial</td>
<td>23rd Street NW</td>
<td>NRHP</td>
</tr>
<tr>
<td>Virginia Avenue Cultural Landscape</td>
<td>Virginia Avenue NW between 8th Street NW and New Hampshire Avenue NW</td>
<td>NRHP-Eligible</td>
</tr>
<tr>
<td>Constitution Gardens Cultural Landscape</td>
<td>Constitution Avenue and 17th Street NW</td>
<td>NRHP-Eligible</td>
</tr>
</tbody>
</table>

4.5 **ASSESSMENT OF EFFECTS**

The Assessment of Effects determined that the implementation of the project will result in an adverse effect to the Eccles Building and the FRB-East Building properties as character-defining features of the buildings and landscapes will be altered or removed, which will diminish their integrity to the district. The project will also have an adverse effect on the Northwest Rectangle Historic District as it will change the character of the district and the contributing features of the district’s setting and influence the aesthetic integrity of the district’s historic features.

4.6 **ENVIRONMENTAL DOCUMENTATION**

The District prepares a draft Environmental Assessment (EA) to consider the proposed project’s potential environmental impacts under the National Environmental Protection Act (NEPA). A public scoping notice was sent to interested parties on 3 September 2019, announcing the public scope period and a combined public
The FRB-East Building addition and parking garage will be designed and built as a LEED Platinum certified project. The design of the project systems will focus on achieving the best energy performance in terms of operational efficiency to minimize the load, maximize opportunities for energy savings, and improvements to Federal operations and reduction of agency greenhouse gas emissions support preparations for the impact of future clean energy market of DC, and plan for renewables, prepare the building for the expected increase. Proposed stormwater management strategies will significantly reduce the stormwater volume per application rainfall event, as measured for a 24-hour, 10-year storm event.

Figure 4-4: FEMA 500-year Flood Map, 2019

4.9 FLOOD PLANNING AND STORMWATER MANAGEMENT

The Eccles and FRB-East buildings are outside of the 1%- or 0.2% Annual Chance (0.2% Annual Chance) flood hazard areas according to FEMA mapped floodplain area (100-year, 1% Annual Chance) flood hazard areas. The Eccles and FRB-East buildings are outside of the FEMA mapped floodplain area (100-year, 1% Annual Chance) flood hazard areas. The Eccles and FRB-East buildings are outside of the FEMA mapped floodplain areas (100-year, 1% Annual Chance) flood hazard areas.

4.9.1 Stormwater Management

4.9.2 Stormwater Retention Volume Requirements

The Eccles and FRB-East buildings are outside of the 1%- or 0.2% Annual Chance (0.2% Annual Chance) flood hazard areas. The Eccles and FRB-East buildings are outside of the FEMA mapped floodplain areas (100-year, 1% Annual Chance) flood hazard areas. The Eccles and FRB-East buildings are outside of the FEMA mapped floodplain areas (100-year, 1% Annual Chance) flood hazard areas.
Table 4.2: Stormwater Retention Volume Achieved

<table>
<thead>
<tr>
<th>BMP Type</th>
<th>Retention Volume Achieved (in)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bioretention</td>
<td>~25,000</td>
</tr>
<tr>
<td>Vegetated roofs</td>
<td>~20,000</td>
</tr>
<tr>
<td>Open space over the below-grade parking structure</td>
<td>~19,000</td>
</tr>
<tr>
<td>Green roof over the FRB-East Building</td>
<td>~1,000</td>
</tr>
<tr>
<td>Cooling tower makeup</td>
<td>~17,000</td>
</tr>
<tr>
<td>Heritage and special trees</td>
<td>~800</td>
</tr>
<tr>
<td>Street trees</td>
<td>~7,600</td>
</tr>
<tr>
<td>Total Retention Volume</td>
<td>~80,000</td>
</tr>
</tbody>
</table>

The SWRv achieved was calculated to be ~25,000 infor the FRB-East building, new building addition for the FRB-East building, and the floorplains south of FRB-East. Although the impervious area will increase, the new additions will greatly improve the retention of run off as most of the stormwater areas will be directed to and will be oversized to control larger storm events.

Stormwater Retention Volume Achieved: The SWRv is retained through a combination of the following:

\[\text{SWRv} = \text{Stormwater Retention Volume} \]

\[\text{SWRv} = \text{1.7in} \times \text{Rv} \times \text{Area} / 12 \]

where particular practice is calculated using the following equation:

\[\text{Rv} = \text{rainfall retention volume} \]

The total retention volume within the parcel must be retained as specified by the BMPs. The BMPs provide a retention volume that is consistent with the surrounding area.

The SWRv achieved was calculated to be ~25,000 infor the FRB-East building, new building addition for the FRB-East building, and the floorplains south of FRB-East. Although the impervious area will increase, the new additions will greatly improve the retention of run off as most of the stormwater areas will be directed to and will be oversized to control larger storm events.

Stormwater Retention Volume Achieved: The SWRv achieved was calculated to be ~25,000 infor the FRB-East building, new building addition for the FRB-East building, and the floorplains south of FRB-East. Although the impervious area will increase, the new additions will greatly improve the retention of run off as most of the stormwater areas will be directed to and will be oversized to control larger storm events.

Stormwater Retention Volume Achieved: The SWRv achieved was calculated to be ~25,000 infor the FRB-East building, new building addition for the FRB-East building, and the floorplains south of FRB-East. Although the impervious area will increase, the new additions will greatly improve the retention of run off as most of the stormwater areas will be directed to and will be oversized to control larger storm events.

Stormwater Retention Volume Achieved: The SWRv achieved was calculated to be ~25,000 infor the FRB-East building, new building addition for the FRB-East building, and the floorplains south of FRB-East. Although the impervious area will increase, the new additions will greatly improve the retention of run off as most of the stormwater areas will be directed to and will be oversized to control larger storm events.

Stormwater Retention Volume Achieved: The SWRv achieved was calculated to be ~25,000 infor the FRB-East building, new building addition for the FRB-East building, and the floorplains south of FRB-East. Although the impervious area will increase, the new additions will greatly improve the retention of run off as most of the stormwater areas will be directed to and will be oversized to control larger storm events.

Stormwater Retention Volume Achieved: The SWRv achieved was calculated to be ~25,000 infor the FRB-East building, new building addition for the FRB-East building, and the floorplains south of FRB-East. Although the impervious area will increase, the new additions will greatly improve the retention of run off as most of the stormwater areas will be directed to and will be oversized to control larger storm events.

Stormwater Retention Volume Achieved: The SWRv achieved was calculated to be ~25,000 infor the FRB-East building, new building addition for the FRB-East building, and the floorplains south of FRB-East. Although the impervious area will increase, the new additions will greatly improve the retention of run off as most of the stormwater areas will be directed to and will be oversized to control larger storm events.

Stormwater Retention Volume Achieved: The SWRv achieved was calculated to be ~25,000 infor the FRB-East building, new building addition for the FRB-East building, and the floorplains south of FRB-East. Although the impervious area will increase, the new additions will greatly improve the retention of run off as most of the stormwater areas will be directed to and will be oversized to control larger storm events.

Stormwater Retention Volume Achieved: The SWRv achieved was calculated to be ~25,000 infor the FRB-East building, new building addition for the FRB-East building, and the floorplains south of FRB-East. Although the impervious area will increase, the new additions will greatly improve the retention of run off as most of the stormwater areas will be directed to and will be oversized to control larger storm events.

Stormwater Retention Volume Achieved: The SWRv achieved was calculated to be ~25,000 infor the FRB-East building, new building addition for the FRB-East building, and the floorplains south of FRB-East. Although the impervious area will increase, the new additions will greatly improve the retention of run off as most of the stormwater areas will be directed to and will be oversized to control larger storm events.

Stormwater Retention Volume Achieved: The SWRv achieved was calculated to be ~25,000 infor the FRB-East building, new building addition for the FRB-East building, and the floorplains south of FRB-East. Although the impervious area will increase, the new additions will greatly improve the retention of run off as most of the stormwater areas will be directed to and will be oversized to control larger storm events.

Stormwater Retention Volume Achieved: The SWRv achieved was calculated to be ~25,000 infor the FRB-East building, new building addition for the FRB-East building, and the floorplains south of FRB-East. Although the impervious area will increase, the new additions will greatly improve the retention of run off as most of the stormwater areas will be directed to and will be oversized to control larger storm events.

Stormwater Retention Volume Achieved: The SWRv achieved was calculated to be ~25,000 infor the FRB-East building, new building addition for the FRB-East building, and the floorplains south of FRB-East. Although the impervious area will increase, the new additions will greatly improve the retention of run off as most of the stormwater areas will be directed to and will be oversized to control larger storm events.

Stormwater Retention Volume Achieved: The SWRv achieved was calculated to be ~25,000 infor the FRB-East building, new building addition for the FRB-East building, and the floorplains south of FRB-East. Although the impervious area will increase, the new additions will greatly improve the retention of run off as most of the stormwater areas will be directed to and will be oversized to control larger storm events.

Stormwater Retention Volume Achieved: The SWRv achieved was calculated to be ~25,000 infor the FRB-East building, new building addition for the FRB-East building, and the floorplains south of FRB-East. Although the impervious area will increase, the new additions will greatly improve the retention of run off as most of the stormwater areas will be directed to and will be oversized to control larger storm events.

Stormwater Retention Volume Achieved: The SWRv achieved was calculated to be ~25,000 infor the FRB-East building, new building addition for the FRB-East building, and the floorplains south of FRB-East. Although the impervious area will increase, the new additions will greatly improve the retention of run off as most of the stormwater areas will be directed to and will be oversized to control larger storm events.

Stormwater Retention Volume Achieved: The SWRv achieved was calculated to be ~25,000 infor the FRB-East building, new building addition for the FRB-East building, and the floorplains south of FRB-East. Although the impervious area will increase, the new additions will greatly improve the retention of run off as most of the stormwater areas will be directed to and will be oversized to control larger storm events.

Stormwater Retention Volume Achieved: The SWRv achieved was calculated to be ~25,000 infor the FRB-East building, new building addition for the FRB-East building, and the floorplains south of FRB-East. Although the impervious area will increase, the new additions will greatly improve the retention of run off as most of the stormwater areas will be directed to and will be oversized to control larger storm events.

Stormwater Retention Volume Achieved: The SWRv achieved was calculated to be ~25,000 infor the FRB-East building, new building addition for the FRB-East building, and the floorplains south of FRB-East. Although the impervious area will increase, the new additions will greatly improve the retention of run off as most of the stormwater areas will be directed to and will be oversized to control larger storm events.

Stormwater Retention Volume Achieved: The SWRv achieved was calculated to be ~25,000 infor the FRB-East building, new building addition for the FRB-East building, and the floorplains south of FRB-East. Although the impervious area will increase, the new additions will greatly improve the retention of run off as most of the stormwater areas will be directed to and will be oversized to control larger storm events.

Stormwater Retention Volume Achieved: The SWRv achieved was calculated to be ~25,000 infor the FRB-East building, new building addition for the FRB-East building, and the floorplains south of FRB-East. Although the impervious area will increase, the new additions will greatly improve the retention of run off as most of the stormwater areas will be directed to and will be oversized to control larger storm events.
Figure 4-7: Existing view looking northeast along Constitution Avenue from 23rd Street toward project area.

Figure 4-8: Simulation looking northeast along Constitution Avenue from 23rd Street toward project area.

Figure 4-9: Existing view looking northeast toward project area from the Vietnam Veterans Memorial.

Figure 4-10: Simulation looking northeast toward project area from the Vietnam Veterans Memorial.
Figure 4-11: Existing view looking northeast toward project area from Constitution Gardens.

Figure 4-12: Simulation looking northeast toward project area from Constitution Gardens.

Figure 4-13: Existing view looking northeast toward project area from 21st Street and Constitution Ave NW.

Figure 4-14: Simulation looking northeast toward project area from 21st Street and Constitution Ave NW.
Figure 4-15: Existing view looking northeast from the top of the Lincoln Memorial toward the project area.

Figure 4-16: Simulation looking northeast from the top of the Lincoln Memorial toward the project area.

Figure 4-17: Existing view looking northwest along Constitution Avenue from 17th Street toward project area.

Figure 4-18: Simulation looking northwest along Constitution Avenue from 17th Street toward project area.
Figure 4-19: Existing view looking northwest toward project area from 20th Street and Constitution Av.

Figure 4-20: Simulation looking northwest toward project area from 20th Street and Constitution Av.

Figure 4-21: Existing view looking southwest toward project area from 19th Street and Virginia Ave NW.

Figure 4-22: Simulation looking southwest toward project area from 19th Street and Virginia Ave NW.