Consultant Team

<table>
<thead>
<tr>
<th>Consultant</th>
<th>Role</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ayers Saint Gross</td>
<td>Architecture</td>
<td>Baltimore, MD</td>
</tr>
<tr>
<td>Dharam Consulting</td>
<td>Cost Consultant</td>
<td>Philadelphia, PA</td>
</tr>
<tr>
<td>GHD</td>
<td>Fire Protection / Security / Telecom</td>
<td>Chantilly, VA</td>
</tr>
<tr>
<td>Mueller Associates</td>
<td>MEP Engineer</td>
<td>Linthicum, MD</td>
</tr>
<tr>
<td>Robert Silman Assoc.</td>
<td>Structural Engineer</td>
<td>Washington, DC</td>
</tr>
<tr>
<td>Rummel, Klepper & Kahl, LLP</td>
<td>Civil Engineer</td>
<td>Baltimore, MD</td>
</tr>
</tbody>
</table>

Table of Contents

- **Introduction**
 - pg 3
- **Project Description**
 - pg 8
- **Building Organization**
 - pg 14
- **Materials**
 - pg 20
- **Floor Plans**
 - pg 24
- **Rendered Views**
 - pg 30
- **Building Elevations**
 - pg 44
- **Sections**
 - pg 58
Table of Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.01</td>
<td>1994 Suitland Collections Center Master Plan proposed Site plan</td>
</tr>
<tr>
<td>1.02</td>
<td>2020 Suitland Collections Center Master Plan Update</td>
</tr>
<tr>
<td>1.03</td>
<td>Vicinity Map</td>
</tr>
<tr>
<td>1.04</td>
<td>Location Map</td>
</tr>
<tr>
<td>1.05</td>
<td>Existing Site Plan</td>
</tr>
<tr>
<td>1.06</td>
<td>Proposed Site Plan</td>
</tr>
<tr>
<td>1.07</td>
<td>Stormwater Management Plan</td>
</tr>
<tr>
<td>1.08</td>
<td>Proposed Site Utilities</td>
</tr>
<tr>
<td>1.09</td>
<td>Example of fire protection water tank</td>
</tr>
<tr>
<td>1.10</td>
<td>Bioretention Basin Plan</td>
</tr>
<tr>
<td>1.11</td>
<td>Impervious Area Calculations</td>
</tr>
<tr>
<td>1.12</td>
<td>Water Quality Requirements</td>
</tr>
<tr>
<td>1.13</td>
<td>Example of Bioretention Facility</td>
</tr>
<tr>
<td>1.14</td>
<td>MSC Elevation Looking North</td>
</tr>
<tr>
<td>1.15</td>
<td>View looking east to MSC Loading Dock</td>
</tr>
<tr>
<td>1.16</td>
<td>View looking north to Pod 3 Mechanical Yard</td>
</tr>
<tr>
<td>1.17</td>
<td>View looking north to Pod 2</td>
</tr>
<tr>
<td>1.18</td>
<td>Aerial view of MSC from south</td>
</tr>
<tr>
<td>1.19</td>
<td>Precast Architectural Concrete (PAC) Finish Detail, Pod 4</td>
</tr>
<tr>
<td>1.20</td>
<td>PAC Proposed Finish Ranges in consideration</td>
</tr>
<tr>
<td>1.21</td>
<td>Existing PAC Finish on Pod 4</td>
</tr>
<tr>
<td>1.22</td>
<td>Proposed Typical PAC Panel with vertical reveals</td>
</tr>
<tr>
<td>1.23</td>
<td>3D Isometric of Proposed Coping, vertical reveal, and base drip edge</td>
</tr>
<tr>
<td>1.24</td>
<td>01 Level Composite Plan</td>
</tr>
<tr>
<td>1.25</td>
<td>01 Level Plan</td>
</tr>
<tr>
<td>1.26</td>
<td>02 Level Plan</td>
</tr>
<tr>
<td>1.27</td>
<td>03 Level Plan</td>
</tr>
<tr>
<td>1.28</td>
<td>Roof Plan</td>
</tr>
<tr>
<td>1.29</td>
<td>Aerial View from the South</td>
</tr>
<tr>
<td>1.30</td>
<td>Aerial View from the Southeast</td>
</tr>
<tr>
<td>1.31</td>
<td>Street View Looking Northwest from Silver Hill Road</td>
</tr>
<tr>
<td>1.32</td>
<td>Street View Looking North from Old Silver Hill Road</td>
</tr>
<tr>
<td>1.33</td>
<td>View Looking East from Garber Complex</td>
</tr>
<tr>
<td>1.34</td>
<td>View Looking Northeast from Garber Complex</td>
</tr>
<tr>
<td>1.35</td>
<td>View from South of Campus Access Road</td>
</tr>
<tr>
<td>1.36</td>
<td>North Elevation</td>
</tr>
<tr>
<td>1.37</td>
<td>South Elevation - with Screen Option</td>
</tr>
<tr>
<td>1.38</td>
<td>South Elevation - without Screen Option</td>
</tr>
<tr>
<td>1.39</td>
<td>West Elevation - with Screen Option</td>
</tr>
<tr>
<td>1.40</td>
<td>West Elevation - without Screen Option</td>
</tr>
<tr>
<td>1.41</td>
<td>East Elevation - with Screen Wall</td>
</tr>
<tr>
<td>1.42</td>
<td>East Elevation - without Screen Wall</td>
</tr>
<tr>
<td>1.43</td>
<td>North/South Section</td>
</tr>
<tr>
<td>1.44</td>
<td>East/West Section</td>
</tr>
</tbody>
</table>
Narrative Materials and Data

The Smithsonian Institution (SI) is the world’s largest museum and research complex, housing more than 155 million objects and specimens, 2 million library volumes, and 163,000 cubic feet of archival material. It is a global resource accessed each year by millions of visitors and researchers who wish to explore subjects from aeronautics to zoology.

In 2014 SI completed a Collections Space Framework Plan (CSFP) that was the result of a collaborative, pan-Institutional effort to document, analyze, quantify and plan for addressing the Smithsonian’s current and future collections space needs.

The CSFP identified the construction of the last phase of the Museum Support Center (MSC) at the Suitland Collections Center (SCC) included in the SCC masterplan as an anticipated near-term project. In addition to providing collections storage space for SI, Pod 6 provides much-needed space for the National Gallery of Art which will occupy approximately 35% of the building’s collection spaces.
Introduction
The Smithsonian Institution’s Museum Support Center (MSC) at the Suitland Collections Center Campus in Suitland, Maryland provides collections storage, collections management and research space for SI Museums. The MSC building opened in 1983 and included:

- four storage pods;
- a circulation spine, referred to as the “Street;”
- research labs;
- offices;
- a central utility plant;
- a loading dock and
- other support spaces

The Suitland Collections Center Master Development Plan, dated January 1994, provided for the addition of two storage pods. The first addition was Pod 5 constructed on the eastern end of MSC in 2007. Pod 6 is the last anticipated collections storage building in the original MSC Design and approved as part of the 1994 SCC Master Plan. It is reflected in the SCC Master Plan update approved by NCPC in June 2020 as a near-term project located at the western end of MSC.

The development of Pod 6 was a result of the 2014 Collections Space Framework Plan (CSFP). The CSFP was a detailed Smithsonian project to identify and strategically address the pan-Institutional collections space needs throughout its 2.1 million square feet of collections space at more than 35 properties. The CSFP holistically looked at all owned and leased SI collections space, future needs and management strategies to ensure its collections are preserved and remain accessible for current and future generations. Through the CSFP and the Institution’s analysis of its existing owned and leased properties, the Institution established that leasing space is to be avoided, except for short term purposes when owned solutions fail to provide an option. Furthermore, the CSFP acknowledged that with limited collections space on the National Mall, the SCC and the Dulles Collections Center (DCC) provide an efficient and sustainable solution to addressing collections space needs pan-Institutionally.

The immediate program needs for collections storage met by the addition of Pod 6 to the MSC were studied further in a feasibility study in 2016. It was determined that with the addition of Pod 6, SI will fulfill the following goals:
- Terminate costly lease agreements for storage space.
- Relocate collections from at-risk spaces where catastrophic or imminent failure and/or life safety and other code compliance requirements cannot be met.
- Relocate collections from basement storage in Mall buildings that have historically been susceptible to flooding.
• Provide swing space to support renovations of Mall buildings.
• Provide immediate decompression space for units that already have a presence at MSC in order to preserve existing adjacencies.

Subsequently, with encouragement from the Office of Management and Budget, SI partnered with the National Gallery of Art to provide space for collections space storage requirements. A joint feasibility study was competed in 2018 that developed three options. A three-level building was selected for further development.

The three-level building includes collection storage and collection support space for SI and NGA. The building also includes a stand-alone mechanical plant resulting in a 187,735 GSF building.

The location of Pod 6 leverages past investment in infrastructure, such as site utilities, and loading dock. The majority of the site is currently developed with an impervious parking lot, SI Construction Manager's Trailer, and Botany Greenhouse. Pod 6 will replace these structures. The SI Construction Manager's Trailer will be relocated and a new Botany Greenhouse will be constructed at the SCC under a different contract.

Situated near the middle of campus, Pod 6 will be the transitional building between the existing MSC and the new development included in the 2020 Suitland Collections Center Master Plan update approved in June 2020.
Project Description

Site
Pod 6 will be constructed on approximately 3.19 acres adjacent to the west end of Pod 4 replacing a parking lot, a sloped lawn, access road, Construction Management Trailer, and Botany Greenhouse.

The site is bordered on the west by the Garber Access Road and on the north by the loop road around MSC leading to the MSC loading dock, an access road from the south currently runs through the existing parking lot and will be rerouted to the Garber Access Road south of Pod 6.

A Storm water bioretention basin will be added south of the building to capture the run-off from the Pod 6 roof and adjacent impervious surfaces upgraded as part of this project. To the north, one filter box will be added that accounts for new run-off not previously on site.

To reroute the access road and install the bioretention facility some trees, south of the project site will be removed. Trees will be inventoried for size, type and health. Efforts will be made to avoid removal of large caliper trees, if possible, with advice from SI’s arborist.

Replacement trees will be planted onsite to replace those removed. No additional changes are proposed to the surrounding landscape.

The project will also include the construction of a 410,000-gallon water tank and small pump house near the southeast corner of Pod 5 to provide a redundant water source for the campus’s fire protection system, as shown in the SCC Master Plan. The water tank will be 42'-0" diameter and 40'-0" tall, which is nearly the same height as Pod 5. The water tank is required to provide redundancy to supplement the municipal source of water for fire protection for MSC and the new Pod, as required by Smithsonian’s fire protection standards.

Parking
To meet the Smithsonian’s commitment to gradually reach a parking ratio for SCC-based employee spaces of 1 space/3 employees over the next twenty years, a total of 40 existing spaces will be removed or repurposed as part of four projects anticipated to be undertaken in this decade. The removed or repurposed spaces would be distributed among projects and areas of the campus as follows: Botany Greenhouse Replacement, 5 spaces at the Smithsonian Gardens lot; MSC Pod 6, 15 spaces from the west side of MSC; AHHP Storage Building, 5 spaces from Garber lot and NMAI-CRC West Addition, 15 spaces from CRC lot. SI will conduct a survey of transportation in FY 2021.
Utilities

All the major utilities required to service the proposed storage module are currently supplied to the site and include: electric, water, sanitary sewer, gas, communication, and storm drain. While the new addition requires new service connections and some utility relocation, all the required utilities are already in the immediate vicinity of the building footprint.

The MSC facility currently has an existing water distribution network which forms a complete loop around the existing MSC Buildings with a 250mm (10 inch) water pipe and many branches of varying diameters. A portion of the water line loop sits under the proposed location for Pod 6 and will require relocation around the proposed building as part of this program.

A new 3-inch water supply from the relocated 10-inch loop will provide domestic water to the building.
Pod 6 Impervious Area

<table>
<thead>
<tr>
<th>Area</th>
<th>Acres</th>
<th>Square Meters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project Area</td>
<td>3.19</td>
<td>12,927</td>
</tr>
<tr>
<td>Existing Impervious Area</td>
<td>1.34</td>
<td>5,431</td>
</tr>
<tr>
<td>Existing Pervious Area</td>
<td>1.85</td>
<td>7,496</td>
</tr>
<tr>
<td>Proposed Impervious Area</td>
<td>2.34</td>
<td>9,489</td>
</tr>
<tr>
<td>Proposed Pervious Area</td>
<td>0.85</td>
<td>3,438</td>
</tr>
<tr>
<td>Increase in Impervious Area</td>
<td>1.00</td>
<td>4,047</td>
</tr>
</tbody>
</table>

Pod 6 Water Quality Requirements

<table>
<thead>
<tr>
<th>Metric</th>
<th>English</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Site Drainage Area, m² (ac)</td>
<td>12,927 3.19</td>
</tr>
<tr>
<td>Existing condition impervious area, m² (ac):</td>
<td>5,431 1.34</td>
</tr>
<tr>
<td>Existing condition pervious area, m² (ac):</td>
<td>7,496 1.85</td>
</tr>
<tr>
<td>Ex. % Impervious:</td>
<td>42.0%</td>
</tr>
<tr>
<td>Proposed condition impervious area, m² (ac)</td>
<td>9,489 2.34</td>
</tr>
<tr>
<td>Proposed condition pervious area, m² (ac)</td>
<td>3,438 0.85</td>
</tr>
<tr>
<td>Pr. % Impervious:</td>
<td>73.0%</td>
</tr>
<tr>
<td>P, mm (in)</td>
<td>25.4 1.00</td>
</tr>
<tr>
<td>AT for Redevelopment (50% of Ex. Imp.), m² (ac)</td>
<td>2,716 0.67</td>
</tr>
<tr>
<td>AT for New Development (Prop. Imp. - Ex. Imp.), m² (ac)</td>
<td>4,058 1.00</td>
</tr>
<tr>
<td>Total Impervious Area Requiring Treatment (IART), m² (ac)</td>
<td>6,773 1.67</td>
</tr>
<tr>
<td>Total ESDv Required, m³ (ft³)</td>
<td>212 7,497</td>
</tr>
<tr>
<td>PTSA 95th Percentile Rainfall Depth, mm (in)</td>
<td>43.18 1.70</td>
</tr>
<tr>
<td>Post-Development Runoff Depth, mm (in)</td>
<td>17.98 0.71</td>
</tr>
<tr>
<td>Pre-Development Runoff Depth, mm (in)</td>
<td>12.65 0.50</td>
</tr>
<tr>
<td>Required EISA Water Quality Volume to be Treated, m³ (cf)</td>
<td>158 5,572</td>
</tr>
</tbody>
</table>

Stormwater Management

Construction of the new pod is subject to compliance with the stormwater management requirements of Maryland Department of the Environment, and the Energy Independence and Security Act of 2007 (EISA). MDE has conducted a preliminary review of the SWM design, their comments are illustrated in this submission. The design team will continue working with MDE as the design progresses. Compliance with EISA has resulted in a shift in stormwater methodology that focuses on measures that retain runoff on site such as bioretention. It is expected this project will meet the requirements for a redevelopment waiver since the existing site is greater than 40% impervious. The redevelopment waiver allows the new construction to utilize existing stormwater facilities to the extent possible resulting in new stormwater facilities that are smaller than otherwise would be required.

The project site is located within Prince George’s County 100-year storm control zone, so the bioretention is sized to control the 100-year storm event.

The stormwater management plan for Pod 6 will be coordinated with the site’s MS4 permit.

The required estimated storm discharge volume required to be held onsite is 7,497 CF, the designed total storm discharge volume to be held onsite is 10,745 CF. The required EISA Water Quality Volume required to be treated is 5,572 CF.
Smithsonian Collections Space Standards

The Smithsonian’s collections space standards have evolved since the Museum Support Center opened in 1983, when it was considered state of the art. The requirements for optimum storage preservation environments, security and fire safety requirements developed with the CSFP defined prototypes for storage of large and small-medium sized objects. These were further refined through the design and construction of the first storage module adjacent to the Udvar-Hazy Center at the Dulles Collections Center and used in the SCC master planning.

The collections storage building prototypes are 3—4 stories in order to improve site stewardship by minimizing site coverage and to minimize the roof area over collections, with its potential for water intrusion, while staying within the limitations of non-high-rise construction. The maximum module of floor area was identified as 30,000 SF to meet fire safety standards. Higher floor-to-floor heights than typical office floors—16 to20 ft. — are required to maintain clearances of structure and to fire sprinklers and specialized fire protection systems as required by codes and SI standards for fire protection of collections space. Ground floor space is prioritized for large and heavy objects. Flexibility is provided for some or all of the ground floor to be open two stories to accommodate large objects and high-bay storage. Structure is defined by requirements for heavy floor loading capacity and large structural bay sizes for operating material handling equipment.

Pod 6 provides for greatest vertical storage opportunities and maximum flexibility for the future with a higher ground floor height. Its upper levels accommodate the height requirements for storage equipment for SI and NGA, as well as the specialized environmental chamber. A roof parapet provides a fall protection alternative and would screen PV panels on the roof.

Building Organization

Layout and Massing

The 01 level includes the extension of the MSC "Street", Mechanical Equipment Room, and collections storage and collections support spaces. The 02 and 03 Levels include collection storage and collections support spaces.

Pod 6 is approximately 44'-0" taller than the adjacent Pod 4. The 01 Level is designed as high-bay collections storage space, the floor to floor height is 32'-0" and the floor to floor height of the 02 and 03 Levels are each 19'-9".

01 Level

The 01 Level is 66,758 nsf and contains 31,033 nsf of collections storage space and 11,827 nsf of collections support spaces. Pod 6 connects to the MSC loading dock by the "Street." Direct exterior access to collections storage is provided from the "Street" by coiling overhead doors.

02 Level

The majority of the 53,205 nsf on this level is dedicated to collections storage, (47,210 nsf.) There is an additional 1,503 nsf of collections support space. The remaining level is occupied by circulation and building support spaces.

03 Level

The level is 52,720 nsf the with majority of the level dedicated to collections storage, (46,532 nsf.) There is 4,960 nsf of environmental chambers split between cool storage and freezer storage. There are an additional 2,797 nsf of collections support space, while the remaining level is occupied by circulation and building spaces.
Envelope System
The existing MSC exterior walls are precast concrete panels. Within the pods, there is no fenestration. The street is higher than the support spaces; this change in building height allows for a Kalwall clerestory within the Street.

Pod 6 will be protected from the exterior environment by a building envelope of precast architectural concrete (PAC) composite panels. The composite panel consists of the following layers: exterior wythe of 4-inches of concrete; 3-inches of rigid insulation with non-thermally conductive structural composite connectors that join exterior and interior concrete wythes; and an interior wythe 4-inch concrete. The exterior PAC walls have a potential calculated fire-rating of 4-hours to protect collections within. The roof system consists of a metal deck, fire-rated sheathing, R-30 rigid insulation, and a white PMMA membrane matching the existing MSC roof. The building will achieve, based on energy modeling, an 18.8% energy reduction over energy code baselines, in part, because of the high performance of the exterior envelope.

The existing MSC utilizes two different colors of concrete to differentiate the collections storage and the office and support program. Pod 6 will follow this same scheme to differentiate the internal program. The collections storage will be a different color concrete than the “Street” and the Mechanical space. To add visual interest to the façade, vertical reveals will be introduced into the concrete panels to catch the sunlight and to reduce the scale of the panels at eye-level. The precast panels will be acid-etched with a concrete formula that continues the color of the existing MSC for visual continuity.

The extension of the Street will continue the clerestory of a Kalwall-type product. The joints in the clerestory will emphasize the vertical reveals in the PAC.

Structure
The proposed structural system is a steel frame with wide-flange columns, beams, and girders. The floor slab is a composite concrete-formed slab. In order to create a space well-suited to maneuvering large objects, typical column spacing is 30 ft by 43 ft (approx. 9.1 M by 13.1 M.)

Mechanical, Electrical, and Plumbing Systems
Pod 6 will have an independent Mechanical Equipment Room with system redundancy for all air, hot water, cold water, and electrical systems.

Mechanical Equipment Room
The primary mechanical room is located on the 01 Level between Pod 4 and Pod 6. The floor will be 8” (200mm) below the “Street” and collections storage floor level. The 01 level location is strategic to avoid having mechanical equipment above collections storage spaces. Locating mechanical equipment and pipes over collections storage spaces, with the potential for leaks, puts collections at risk from water damage. A sump pump is included to prevent equipment flooding or electrical hazards. Additional mechanical space is provided on a mezzanine within the Mechanical Equipment Room to support an environmental chamber located on the 03 Level.

Exterior Equipment
Exterior mechanical equipment will be located on the Mechanical Equipment Room roof which is not above collections storage space. Exterior equipment includes cooling tower, ventilation penthouses, and exhaust fans. The electrical back-up generator with fuel tank will be located on grade to the south of the building.

Electrical
The incoming electrical service from Silver Hill Road is presently routed where Pod 6 will be located. The service will be relocated. Two additional feeders from PEPCO will serve new PEPCO transformers south of Pod 6. Incoming service feeders will be routed through underground concrete-encased duct banks.

Plumbing
Domestic cold water for Pod 6 will be provided by a new incoming building service line from the campus cold water distribution (loop) system. Backflow preventers will be provided for incoming building service, to plumbing fixtures and equipment as required by code and Smithsonian standards. A main building water meter will be provided in accordance with LEED requirements for Building level water meter prerequisite and two sub-meters will be provided for the Water Metering credit.

Sustainability
The goal of this project is to achieve LEED v4.0 - Gold Certification.

Rooftop photovoltaic panels are currently being studied, as well as a geothermal system. Both systems would potentially reduce costs and demand on existing electrical infrastructure.
Security
Perimeter security is provided by an existing fence and no changes are included in this project.

Historic Preservation
No historical resources are located within the project area or affected by the project.

Flooding
The project site is not in a FEMA Floodplain.

Employees
The number of SI employees will be increased by approximately 5, with some SI maintenance and operational staff associated with Pod 6. There will be additional contractors and staff working at Pod 6 for several years processing collections move-ins. NGA anticipates approximately 5 employees at Pod 6 on a regular basis.

Schedule for Construction and Occupancy for Pod 6
The estimated project completion date is in fall 2024, with occupancy in January 2025.
Existing Material Context

- Kalwall type clerestory
- Light acid-etched PAC Finish
- Exposed Fastener Metal Panel Screen
- Exposed Aggregate PAC Finish
- Light acid-etched PAC Finish

1.15 View looking east to MSC Loading Dock

1.16 View looking north to Pod 3 Mechanical Yard

1.17 View looking north to Pod 2

1.18 Aerial view of MSC from south
- Pod 6 Footprint
- View Location

1.19 Precast Architectural Concrete (PAC) Finish Detail, Pod 4

Photo Credit: Smithsonian Institution
Proposed Materials

1.20 PAC Proposed Finish Ranges in consideration

119 - Buff/Tan - White - Light Sand
141 - White - White - Light Acid
127 - Buff/Tan - White - Light Acid

1.21 Existing PAC Finish on Pod 4

113 - Buff/Tan - White - Light Sand
122 - Buff/Tan - White - Light Acid
163 - Grey - White - Light Sand

1.22 Proposed Typical PAC Panel with vertical reveals

1.23 3D Isometric of Proposed Coping, vertical reveal, and base drip edge
1.31 Street View Looking Northwest from Silver Hill Road
1.32 Street View Looking North from Old Silver Hill Road
View Looking East from Garber Complex
View Looking Northeast from Garber Complex
1.35 View from South of Campus Access Road
Building Elevations

1.36 North Elevation
Scale 1" = 20'-0"
Building Elevations

1.37 South Elevation - with Screen Option
Scale 1" = 20'-0"
Building Elevations

1.38 South Elevation -
without Screen Option
Scale 1" = 20'-0'

- PAC Panel, Color to Match MSC - CUP
- Field Color of Storage Pods
- Screen Wall Color to Match Pod 3 Equipment
- Yard Enclosure
- Emergency Generator
- Retaining Wall
- Electrical Equipment including PEPCO Transformers
- PAC Panel, Color to Match MSC - CUP
Building Elevations

1.39 West Elevation -
with Screen Option
Scale 1” = 20’-0”

- PAC Panel, Color to Match
- Field Color of Storage Pods
- Kalwall Type Clerestory
- Screen Wall Option
- PAC Panel, Color to Match
- MSC - CUP
Building Elevations

1.4.0 West Elevation - without Screen Option
Scale 1" = 20'-0"

PAC Panel, Color to Match
MSC - CUP
Kalwall Type Clerestory

Retaining Wall
Emergency Generator
Field Color of Storage Pods

76' - 7" (2334.3)
Building Elevations

1.41 East Elevation - with Screen Wall
Scale 1" = 20'-0"

- Screen Wall Color to Match Pod 3 Equipment Yard Enclosure
- PAC Panel, Color to Match Field Color of Storage Pods
- PEPCO Transformer
- Emergency Generator
- Screen Wall Option
Building Elevations

1.42 East Elevation - without Screen Wall
Scale 1" = 20'-0"

Screen Wall Color to Match Pod 4 Equipment
Yard Enclosure

PAC Panel, Color to Match
Field Color of Storage Pods

PEPCO Transformer
Emergency Generator
Retaining Wall

Pod 4
Building Sections

1.43 North/South Section
NTS
Building Sections

1.44 East/West Section
NTS
Smithsonian Institution
Office of Planning, Design and Construction
600 Maryland Avenue, SW, Suite 5001
MRC511 PO Box 37012
Washington, DC 20013-7012